

# 2011

## Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro









### Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro

#### RELATÓRIO FINAL

EMITIDO EM: 01/11/2011

COORDENAÇÃO GERAL: Prof. Luiz Pinguelli Rosa<sup>1</sup>

EQUIPE TÉCNICA DO INVENTÁRIO DE EMISSÕES VEICULARES DO ESTADO DO RIO DE JANEIRO:

**COORDENAÇÃO:** Prof<sup>o</sup>. Márcio de Almeida D'Agosto<sup>2</sup>

dagosto@pet.coppe.ufrj.br

Programa de Engenharia de Transportes - PET/COPPE/UFRJ

PESQUISADORES: Cristiane Duarte Ribeiro de Souza

cristiane@ltc.coppe.ufrj.br

Suellem Deodoro Silva

suellem@ltc.coppe.ufrj.br

Marcelino Aurério Vieira da Silva

mausil@ime.eb.br

Ilton Curty Leal Junior

ilton@ltc.coppe.ufrj.br

Julia Maria Menge Rodrigues

julia.menge@poli.ufrj.br

Maria Lívia Real de Almeida

maria-livia@poli.ufrj.br

Arthur Prado Barboza

arthur.barboza@poli.ufrj.br

Laboratório de Transporte de Carga – LTC/PET/COPPE/UFRJ

<sup>&</sup>lt;sup>1</sup> Coordenador do Projeto Estruturação do Embasamento Técnico para Preparação de Estratégia de Economia Verde para a Conferência Rio + 20

<sup>&</sup>lt;sup>2</sup> Coordenador do Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro



#### ÍNDICE

| A T |             |                                                                                                                              |                 |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Al  | PRESE       | ENTAÇÃO                                                                                                                      | 18              |
| 1.  | INTR        | ODUÇÃO                                                                                                                       | 19              |
| 2.  | <b>EMIS</b> | ODOLOGIA UTILIZADA PARA A ELABORAÇÃO DO INVENTÁRIO I<br>SÕES ATMOSFÉRICAS POR VEÍCULOS AUTOMOTORES I<br>DO DO RIO DE JANEIRO | DO              |
|     | 2.1.        | Procedimento para Cálculo das Emissões Atmosféricas                                                                          | 22              |
|     | FROT        | TA CIRCULANTE ESTIMADA DE VEÍCULOS DO ESTADO DO RIO I                                                                        | DE              |
|     |             | Procedimentos adotados para estimar a frota circulante de veículos o do Rio de Janeiro                                       |                 |
|     |             | Evolução histórica da frota circulante estimada de veículos do Estado do I<br>neiro – 1980 a 2010.                           |                 |
| 4.  | INTE        | NSIDADE DE USO                                                                                                               | 35              |
|     | 4.1.        | Intensidade de Uso Ajustada                                                                                                  | 37              |
| 5.  | FATO        | OR DE EMISSÃO                                                                                                                | 42              |
|     | 5.1.        | Fatores de emissão para automóveis e comerciais leves do ciclo Otto                                                          | 43              |
|     | <b>5.2.</b> | Fatores de emissão para automóveis e comerciais leves convertidos a GNV                                                      | <sup>7</sup> 49 |
|     | 5.3.        | Fatores de emissão para motocicletas                                                                                         | 49              |
|     | <b>5.4.</b> | Fatores de emissão para veículos do ciclo Diesel                                                                             | 49              |
|     | 5.5.        | Fatores de emissão de ${\rm CO}_2$ para veículos do ciclo Otto e ciclo Diesel                                                | 51              |
| 6.  | RESU        | ILTADOS                                                                                                                      | 52              |
|     | 6.1.        | Premissas adotadas para projeção da emissão                                                                                  | 52              |
|     | 6.1.1.      | Frota de veículos                                                                                                            | 52              |
|     | 6.1.2.      | Intensidade de uso                                                                                                           | 53              |
|     | 6.1.3.      | Fatores de emissão                                                                                                           | 53              |
|     | <b>6.2.</b> | Emissões de monóxido de carbono (CO)                                                                                         | 54              |
|     | <b>6.3.</b> | Emissões de óxido de nitrogênio $(NO_x)$                                                                                     | 55              |
|     | <b>6.4.</b> | Emissões de material particulado (MP)                                                                                        | 57              |
|     | 6.5.        | Emissões de aldeídos (RCHO)                                                                                                  | 58              |
|     | 6.6.        | Emissões de hidrocarbonetos não metanos (NMHC)                                                                               | 60              |
|     | <b>6.7.</b> | Emissões de metano (CH4)                                                                                                     | 62              |
|     | 6.8.        | Emissões de dióxido de carbono (CO <sub>2</sub> )                                                                            | 63              |



| 7. RECOMENDAÇÕES PARA POLÍTICAS DE TRANSPORTES 64                                                                  |
|--------------------------------------------------------------------------------------------------------------------|
| 8. CONSIDERAÇÕES FINAIS, RECOMENTAÇÕES E LIMITAÇÕES 67                                                             |
| REFERÊNCIAS BIBLIOGRÁFICAS70                                                                                       |
| ANEXO I – VEÍCULOS CADASTRADOS NO DETRAN-RJ73                                                                      |
| ANEXO II – ESTIMATIVA DE LICENCIAMENTO DE VEÍCULOS NOVOS NO<br>RIO DE JANEIRO POR MEIO DOS DADOS DA ANFAVEA 80     |
| ANEXO III – ESTIMATIVA DE LICENCIAMENTO DE MOTOCICLETAS NOVAS NO RIO DE JANEIRO POR MEIO DOS DADOS DA ABRACICLO 86 |
| ANEXO IV – VERIFICAÇÃO DOS AJUSTES E REPRESENTATIVIDADE DAS FROTAS                                                 |
| ANEXO V – FROTA DE VEÍCULOS CONVERTIDOS A GNV96                                                                    |
| ANEXO VI – CURVAS DE SUCATEAMENTO UTILIZADAS NA PESQUISA 99                                                        |
| ANEXO VII – FRAÇÕES MÉDIAS DA FROTA DE VEÍCULOS FLEX FUEL QUE<br>UTILIZAM GASOLINA C E ETANOL HIDRATADO107         |
| ANEXO VIII – PREVISÃO DA EVOLUÇÃO DAS VENDAS DE VEÍCULOS – 2011<br>A 2030                                          |
| ANEXO IX – PREVISÃO DE ESTIMATIVA DE CONSUMO DE COMBUSTÍVEIS<br>PARA O PERÍODO DE 2011 A 2030136                   |
| ANEXO X – DIVISÃO DE CAMINHÕES E ÔNIBUS POR TIPO 143                                                               |
| ANEXO XI – TABELA DE INTENSIDADE DE USO DE REFERÊNCIA 145                                                          |
| ANEXO XII – CONSUMO DE COMBUSTÍVEL OBSERVADO PARA O ESTADO DO RIO DE JANEIRO146                                    |
| ANEXO XIII – RENDIMENTO DOS VEÍCULOS CONSIDERADOS NESTE ESTUDO                                                     |
| ANEXO XIV – LIMITES DO PROCONVE E DO PROMOT 150                                                                    |



#### LISTA DE TABELAS

| Tabela 1: Categorias de veículos consideradas neste estudo para estimativa da frota 26                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|
| Tabela 2: Percentuais utilizados para divisão dos caminhões por tipo                                                                |
| Tabela 3: Fatores de emissão para automóveis e comerciais leves, em g/km 44                                                         |
| Tabela 4: Incremento médio de emissões por acúmulo de rodagem, em g/80.000km 45                                                     |
| Tabela 5: Fatores de emissões evaporativas para automóveis e comerciais                                                             |
| Tabela 6: Normais Climatológicas do Brasil - 1961-1990 – Temperaturas Mínimas 47                                                    |
| Tabela 7: Normais Climatológicas do Brasil - 1961-1990 – Temperaturas médias 48                                                     |
| Tabela 8: Fatores de emissão para veículos a gás natural veicular, em g/km 49                                                       |
| Tabela 9: Fatores de emissão para motocicletas, em g/km                                                                             |
| Tabela 10: Fatores de emissão para motores Diesel por fase do PROCONVE, em g/kWh                                                    |
| Tabela 11: Consumo específico de combustível de motores Diesel por fase do PROCONVE, em g <sub>diesel</sub> /kWh                    |
| Tabela 12: Fatores de emissão para motores Diesel por fase do PROCONVE, em g <sub>poluente</sub> /kg <sub>diesel</sub>              |
| Tabela 13: Fatores de emissão para veículos movidos a diesel, em g <sub>poluente</sub> /km                                          |
| Tabela 14: Fatores de emissão de CO <sub>2</sub> para veículos do ciclo Otto e Diesel                                               |
| Tabela 15: Premissas consideradas para a projeção de frota                                                                          |
| Tabela 16: Informações do banco de dados do DETRAN-RJ                                                                               |
| Tabela 17: Tipos de veículos utilizados e descartados na pesquisa                                                                   |
| Tabela 18: Quantidade de veículos com ano de fabricação anteriores a 1957                                                           |
| Tabela 19: Quantidade de veículos com ano de fabricação 2011                                                                        |
| Tabela 20: Quantidade de veículos com ano de fabricação entre 1957 e 2010                                                           |
| Tabela 21: Quantidade de veículos utilizados na pesquisa por tipo e combustível 76                                                  |
| Tabela 22: Percentual utilizado em relação ao banco de dados original do DETRAN-RJ com ano de fabricação até 2010                   |
| Tabela 23: Automóveis, comerciais leves e motocicletas por ano de fabricação e tipo de combustível considerados - base do DETRAN-RJ |
| Tabela 24: Caminhões e ônibus por ano de fabricação e tipo de combustível considerados - base do DETRAN-RI                          |



| Tabela 25: Licenciamento de automóveis e comerciais leves novos por combustível – 1957/2010 no Brasil                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabela 26: Licenciamento de caminhões e ônibus novos por combustível – 1957/2010 no Brasil                                                                                                                                          |
| Tabela 27: Percentual de vendas de veículo no Rio de Janeiro em relação ao Brasil 83                                                                                                                                                |
| Tabela 28: Licenciamento estimado de automóveis e comerciais leves novos por combustível – 1957/2010 no Rio de Janeiro                                                                                                              |
| Tabela 29: Licenciamento estimado caminhões e ônibus novos por combustível – 1957/2010 no Rio de Janeiro                                                                                                                            |
| Tabela 30: Produção e vendas de motocicletas no Brasil de acordo com os dados disponibilizados na ABRACICLO e vendas estimadas no estado do Rio de Janeiro 86                                                                       |
| Tabela 31: Percentual de vendas de motocicletas no estado do Rio de Janeiro em relação ao Brasil                                                                                                                                    |
| Tabela 32: Resumo das comparações realizadas                                                                                                                                                                                        |
| Tabela 33: Veículos considerados na frota GNV                                                                                                                                                                                       |
| Tabela 34: Quantidade de veículos movidos a GNV cadastrados no DETRAN até agosto de 2011, com ano de fabricação entre 1957 e 2010                                                                                                   |
|                                                                                                                                                                                                                                     |
| Tabela 35: Quantidade de veículos movidos a GNV cadastrados no DETRAN até agosto de 2011 por ano de fabricação                                                                                                                      |
|                                                                                                                                                                                                                                     |
| agosto de 2011 por ano de fabricação                                                                                                                                                                                                |
| agosto de 2011 por ano de fabricação                                                                                                                                                                                                |
| agosto de 2011 por ano de fabricação                                                                                                                                                                                                |
| agosto de 2011 por ano de fabricação. 97  Tabela 36: Total de conversões de veículos a GNV por ano. 98  Tabela 37: Constantes da curva de sucateamento da equação 1. 99  Tabela 38: Dados de PIB e frota estimada de caminhões. 100 |
| agosto de 2011 por ano de fabricação                                                                                                                                                                                                |
| agosto de 2011 por ano de fabricação                                                                                                                                                                                                |
| agosto de 2011 por ano de fabricação                                                                                                                                                                                                |
| agosto de 2011 por ano de fabricação                                                                                                                                                                                                |
| agosto de 2011 por ano de fabricação                                                                                                                                                                                                |
| agosto de 2011 por ano de fabricação                                                                                                                                                                                                |



| Tabela 48: Avaliação dos conjuntos das idades pelos especialistas                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabela 49: Avaliação final para cada conjunto das idades                                                                                                                      |
| Tabela 50: Pesos para os conjuntos das idades                                                                                                                                 |
| Tabela 51: Situações avaliadas                                                                                                                                                |
| Tabela 52: Estimativas de percentuais para cada situação                                                                                                                      |
| Tabela 53 – Dados de PIB-VABPB e população utilizados na pesquisa 118                                                                                                         |
| Tabela 54 – Análise da regressão do PIB-VABPB em função do ano                                                                                                                |
| Tabela 55 – Análise da regressão da população em função do ano                                                                                                                |
| Tabela 56 – Estimativas para o PIB – VABPB e População total do Rio de Janeiro 120                                                                                            |
| Tabela 57 – Avaliação preliminar dos modelos                                                                                                                                  |
| Tabela 58 – Análise da regressão da estimativa de vendas de automóveis em função do PIB e população                                                                           |
| Tabela 59 – Estimativa para vendas de automóveis                                                                                                                              |
| Tabela 60 – Percentual de vendas por combustível no Rio de Janeiro                                                                                                            |
| Tabela 61 – Avaliação preliminar dos modelos para comerciais leves                                                                                                            |
| Tabela 62 – Análise da regressão da estimativa de vendas de comerciais leves em função do PIB e população                                                                     |
| Tabela 63 – Estimativa para vendas de comerciais leves                                                                                                                        |
| Tabela 64 – Percentuais de vendas de comerciais leves no Rio de Janeiro                                                                                                       |
| Tabela 65 – Avaliação preliminar dos modelos para motocicletas                                                                                                                |
| Tabela 66 – Análise da regressão da estimativa de vendas de motocicletas em função do PIB e população, considerando os anos de 1995 a 2010                                    |
| Tabela 67 – Análise da regressão da estimativa de vendas de motocicletas em função do PIB e população, considerando os anos de 1995 a 2010, excluindo os anos de 2007 e 2008. |
| Tabela 68 – Estimativa para vendas de motocicletas                                                                                                                            |
| Tabela 69 – Percentuais de vendas de motocicletas no Rio de Janeiro                                                                                                           |
| Tabela 70 – Avaliação preliminar dos modelos para caminhões                                                                                                                   |
| Tabela 71 – Análise da regressão da estimativa de vendas de caminhões no Rio de Janeiro                                                                                       |
| Tabela 72 – Estimativa para vendas de caminhões no Rio de Janeiro                                                                                                             |



| Tabela 73 – Avaliação preliminar dos modelos para ônibus                                                    | 133    |
|-------------------------------------------------------------------------------------------------------------|--------|
| Tabela 74 – Análise da regressão da estimativa de vendas de ônibus no Rio de                                |        |
| Tabela 75 – Estimativa para vendas de ônibus no Rio de Janeiro                                              |        |
| Tabela 76 – Densidades e poderes caloríficos inferiores.                                                    | 136    |
| Tabela 77 – Consumo anual de etanol hidratado, gasolina C e GNV no estado d<br>Janeiro                      |        |
| Tabela 78 – Energia consumida anualmente em kcal de etanol hidratado, gase GNV no estado do Rio de Janeiro. |        |
| Tabela 79 – Análise da regressão do poder calorífico em função do PIB - VABI                                | PB 139 |
| Tabela 80 – Análise da regressão do consumo de GNV em função da frota GNV.                                  |        |
| Tabela 81 – Estimativa de GNV em m3 para 2011 a 2030.                                                       | 141    |
| Tabela 82: Percentuais utilizados para divisão dos caminhões por tipo                                       | 144    |
| Tabela 83: Consumo observado de Gasolina C, etanol hidratado, diesel e GNV.                                 | 147    |
| Tabela 84: Rendimento dos automóveis e comerciais leves do ciclo Otto                                       | 148    |
| Tabela 85: Rendimento das motocicletas.                                                                     | 149    |
| Tabela 86: Rendimento dos veículos do ciclo Diesel                                                          | 149    |
| Tabela 87: Limites do PROCONVE para veículos do ciclo Diesel                                                | 150    |
| Tabela 88: Limites do PROCONVE, em g/km, para veículos do ciclo Otto                                        | 150    |
| Tabela 89: Limites de emissão do PROMOT para motocicletas (g/km)                                            | 151    |



#### LISTA DE FIGURAS

| Figura 1: Matriz de transporte motorizado - Brasil 2009                                                                      |
|------------------------------------------------------------------------------------------------------------------------------|
| Figura 2: Comparação da frota do Rio de Janeiro com a frota do Brasil e Divisão percentual da frota fluminense – ano de 2010 |
| Figura 3: Procedimento para cálculo das emissões                                                                             |
| Figura 4: Procedimento utilizado para o cálculo da frota circulante estimada                                                 |
| Figura 5: Curva de sucateamento para veículos do ciclo Otto                                                                  |
| Figura 6: Curvas de sucateamento para veículos do ciclo Diesel                                                               |
| Figura 7: Evolução da frota estimada de veículos por categoria                                                               |
| Figura 8: Evolução da frota estimada de veículos pesados por categoria                                                       |
| Figura 9: Evolução da frota estimada de automóveis por ano de fabricação 31                                                  |
| Figura 10: Evolução da frota estimada de automóveis por tipo de combustível 32                                               |
| Figura 11: Evolução da frota de comerciais leves por tipo de combustível                                                     |
| Figura 12: Evolução da frota estimada de motocicletas por tipo de combustível 33                                             |
| Figura 13: Evolução da frota estimada de automóveis por fase do PROCONVE 33                                                  |
| Figura 14: Evolução da frota estimada de comerciais leves por fase do PROCONVE. 34                                           |
| Figura 15: Evolução da frota estimada de veículos do ciclo Diesel por fase do PROCONVE                                       |
| Figura 16: Evolução da frota estimada de motocicletas por fase do PROCONVE 35                                                |
| Figura 17: Procedimento para cálculo da intensidade de uso corrigida                                                         |
| Figura 18: Intensidade de uso para veículos do ciclo Otto                                                                    |
| Figura 19: Intensidade de uso para veículos do ciclo Diesel                                                                  |
| Figura 20: Rendimentos adotados para os veículos do ciclo Otto                                                               |
| Figura 21: Rendimentos adotados para veículos do ciclo Diesel                                                                |
| Figura 22: Evolução do consumo do estado do Rio de Janeiro de gasolina C no transporte rodoviário                            |
| Figura 23: Evolução do consumo do estado do Rio de Janeiro de etanol hidratado no transporte rodoviário                      |
| Figura 24: Evolução do consumo do estado do Rio de Janeiro de GNV no transporte rodoviário                                   |



| Figura 25: Evolução do consumo do estado do Rio de Janeiro de diesel no transporte rodoviário                   |
|-----------------------------------------------------------------------------------------------------------------|
| Figura 26: Evolução do consumo de gasolina C no transporte rodoviário por categoria de veículo                  |
| Figura 27: Evolução do consumo de etanol hidratado no transporte rodoviário por categoria de veículo            |
| Figura 28: Evolução do consumo de diesel no transporte rodoviário por categoria de veículo                      |
| Figura 29: Evolução do consumo de GNV no transporte rodoviário por categoria de veículo                         |
| Figura 30: Procedimento para definição dos fatores de emissão                                                   |
| Figura 31: Emissões de CO por categoria de veículos                                                             |
| Figura 32: Emissões de CO por tipo de combustível                                                               |
| Figura 33: Emissões de NOx por categoria de veículo                                                             |
| Figura 34: Emissões de NO <sub>x</sub> por tipo de combustível                                                  |
| Figura 35: Emissões de MP por categoria de veículo                                                              |
| Figura 36: Emissões de MP por tipo de combustível                                                               |
| Figura 37: Emissões de RCHO por categoria de veículo.                                                           |
| Figura 38: Emissões de RCHO por tipo de combustível                                                             |
| Figura 39: Emissões de NMHC por categoria de veículo                                                            |
| Figura 40: Emissões de NMHC por tipo de combustível                                                             |
| Figura 41: Emissões de NMHC por automóveis e comerciais leves do ciclo Otto por tipo de emissão                 |
| Figura 42: Emissões de CH <sub>4</sub> por categoria de veículo                                                 |
| Figura 43: Emissões de CH <sub>4</sub> por tipo de combustível                                                  |
| Figura 44: Emissões de CO <sub>2</sub> por categoria de veículo                                                 |
| Figura 45: Emissões de CO <sub>2</sub> por tipo de combustível                                                  |
| Figura 46: Variação do percentual de vendas no estado do Rio de Janeiro do ano 2000 a 2010.                     |
| Figura 47: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para automóvel gasolina |



| Figura 48: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para automóvel etanol                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 49: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para automóvel flex                                                             |
| Figura 50: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para comercial leve gasolina                                                    |
| Figura 51: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para comercial leve etanol                                                      |
| Figura 52: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para comercial leve flex                                                        |
| Figura 53: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para comercial leve diesel                                                      |
| Figura 54: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para caminhão diesel                                                            |
| Figura 55: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para ônibus diesel                                                              |
| Figura 56: Dados do DETRAN em relação às estimativas realizadas com os dados da ABRACICLO para motocicletas a gasolina                                                  |
| Figura 57: Correlação entre o PIB e a frota estimada de caminhões                                                                                                       |
| Figura 58: Correlação entre o PIB e a frota estimada de caminhões                                                                                                       |
| Figura 59: Correlação entre o PIB e a frota estimada de ônibus                                                                                                          |
| Figura 60: Distribuição da frequência do tempo de uso de veículos flex pelos entrevistados                                                                              |
| Figura 61 – Funções de pertinências para as variáveis lingüísticas utilizadas para classificar as idades                                                                |
| Figura 62 - Funções de pertinências para as variáveis lingüísticas utilizadas para classificar os conjuntos das idades                                                  |
| Figura 63: Fração da frota de veículos flexíveis operando com AEHC em função da relação de preços entre o AEHC e a gasolina C, nos postos, em cada unidade da Federação |
| Figura 64: Comparação entre os resultados do estudo de Goldemberg (2008) e os deste trabalho.                                                                           |
| Figura 65 – PIB – VABPB em função do ano                                                                                                                                |
| Figura 66 – População total do Rio de Janeiro em função do ano                                                                                                          |

#### COPPE 14590



| Figura 67 – Estimativa de vendas de automóveis.                      | 123 |
|----------------------------------------------------------------------|-----|
| Figura 68 – Estimativa de vendas de comerciais leves.                | 126 |
| Figura 69 – Estimativa de vendas de motocicletas                     | 130 |
| Figura 70 – Estimativa de vendas de caminhões.                       | 133 |
| Figura 71 – Estimativa de vendas de ônibus.                          | 135 |
| Figura 72: Poder calorífico total em função do ano para o ciclo Otto | 139 |
| Figura 73: Divisão das vendas de caminhões por tipo.                 | 143 |



#### LISTA DE SIGLAS

ANAC - Agência Nacional de Aviação Civil

ANFAVEA - Associação Nacional dos Fabricantes de Veículos Automotores

ANTAQ – Agência Nacional de Transportes Aquaviários

ANTP – Agência Nacional de Transportes Públicos

ANTT - Agência Nacional de Transportes Terrestres

BEN - Balanço Energético Nacional

CETESB - Companhia Ambiental do Estado de São Paulo

CH<sub>4</sub> - metano

CO - monóxido de carbono

CO<sub>2</sub> - dióxido de carbono

DETRAN - Departamento Estadual de Trânsito

COPPE - Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

EPE - Empresa de Pesquisa Energética

FBDS – Fundação Brasileira para o Consumo Sustentável

FETRANSPOR – Federação das Empresas de Transportes de Passageiros do Estado do Rio de Janeiro.

FIPE - Fundação Instituto de Pesquisas Econômicas

GNV - gás natural veicular

IEAVAERJ - Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro

INEAVAR - Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários

MMA - Ministério do Meio Ambiente

MP - material particulado

N<sub>2</sub>O - óxido nitroso

NMCOV – Compostos Orgânicos Voláteis Não Metanos

NMHC - hidrocarbonetos não-metano

NMHC<sub>escap</sub> - hidrocarbonetos não-metano referentes à emissão de escapamento

NMHC<sub>evap</sub> - hidrocarbonetos não-metano referentes à emissões evaporativas

NO<sub>x</sub> - óxidos de nitrogênio

PBT - peso bruto total

Petrobras - Petrobras Petróleo Brasileiro S/A

PNAD - Pesquisa Nacional por Amostra de Domicílios

PROCONVE - Programa de Controle da Poluição do Ar por Veículos Automotores

PROMOT - Programa de Controle da Poluição do Ar por Motociclos e Similares



RCHO - aldeídos

SEA – Secretaria de Estado do Ambiente

SETRANS – Secretaria de Estado de Transportes

SINDIPEÇAS - Sindicato Nacional de Indústria de Componentes para Veículos Automotores

THC - hidrocarbonetos totais

 $THC_{escap}\,$  - hidrocarbonetos totais referentes à emissão de escapamento

UFRJ – Universidade Federal do Rio de Janeiro



#### **SUMÁRIO EXECUTIVO**

O transporte de passageiros e cargas no Brasil é feito, em sua maioria, pelo modo rodoviário. Em função da dependência de combustíveis fósseis por parte do transporte há uma grande participação deste nas emissões de gases de efeito estufa e poluentes atmosféricos locais, regionais e globais.

Diante disto se faz necessária a quantificação dos gases e poluentes atmosféricos emitidos pelo setor de transporte, especificamente do modo rodoviário, para que seja possível o monitoramento da evolução de sua participação no total de emissões e também para a tomada de ações que visem o controle e/ou mitigação dos efeitos nocivos à saúde humana e ao meio ambiente.

O Rio de Janeiro possui cerca de 7% da frota de veículos rodoviários nacionais. Este número é representativo se comparado a outros estados que compõem a federação brasileira. Os automóveis e motocicletas somam 88% da frota fluminense ficando os demais 12% divididos em veículos de carga e ônibus. Conhecer o perfil das emissões atmosféricas deste estado é fundamental dada a importância que o Estado do Rio de Janeiro tem para o cenário nacional.

Para compor o Projeto de Estruturação do Embasamento Técnico para Preparação de Estratégia de Economia Verde para a Conferência Rio + 20, este relatório considera a elaboração do Inventário de Emissões Veiculares do Estado do Rio de Janeiro (IEAVAERJ).

O conteúdo do relatório do IEAVAERJ considera o levantamento das emissões de CO, NOX, RCHO, NMHC, NMHCevap, CH4, MP, CO2 e a metodologia aplicada é baseada no Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (INEAVAR), com o intuito de possibilitar a comparação dos resultados do Estado do Rio de Janeiro com os do Brasil.

Além do levantamento das emissões atmosféricas do transporte rodoviário do ano de 1980 a 2010, o inventário apresenta projeções para os anos entre 2011 e 2030, o que possibilita uma avaliação da evolução das emissões e fornece subsídios para o planejamento de ações de controle.

Para o cálculo das emissões foi realizada a identificação da frota circulante no Estado do Rio de Janeiro, a intensidade de uso dos veículos (quilometragem média percorrida pelos veículos ao longo do ano) e os fatores de emissão. Todos os dados foram obtidos com base em fontes secundárias em função das limitações de se realizar pesquisa de campo. O resultado do procedimento utilizado no inventário apresenta o total de emissões por tipo de poluente, categoria de veículo, por combustível e por ano.



Os resultados mostram que o CO é, em sua maior parte, emitido pelos automóveis, cerca de 55% em 2010, sendo que este número tem uma tendência de leve diminuição para 49% em 2030. A gasolina é o combustível que mais contribui para a emissão de CO, sendo responsável por 74% das emissões em 2010.

No caso do NOx os caminhões pesados e ônibus emitiram 69% em 2010 sendo que a projeção para 2030 é de 76%. O diesel é o combustível com maior influência na emissão deste poluente chegando a 81% em 2010.

Em 2010 os ônibus urbanos e caminhões pesados foram responsáveis também pela emissão de 76% de MP observando-se uma leve tendência de redução para 2030 (71%). Mais uma vez o diesel é responsável por cerca de 91% das emissões de MP.

Para os aldeídos (RCHO) os veículos de ciclo Otto, em especial os movidos a etanol, respondem por 90% das emissões. O etanol representa 39% da emissão de RCHO em 2010 e a tendência é que sua participação cresça atingindo 68% em 2030.

Os hidrocarbonetos (NMHC) são emitidos, na maior parte, pelos automóveis (55% em 2010) sendo somente a gasolina responsável por 73% das emissões neste mesmo ano.

Outro caso em que os automóveis têm grande participação nas emissões de poluentes é o CH4. Neste caso 74% de CH4 em 2010 foram provenientes dos automóveis e esta participação tende a se manter até 2030. Aqui destaca-se o GNV como principal combustível na emissão do poluente em questão, cerca de 63%, o que é maior que a média nacional.

O CO2 é o único tipo de emissão analisada neste relatório que no total tende a aumentar em valores absolutos. Os automóveis, ônibus urbanos e caminhões pesados são os maiores emissores sendo que os movidos a diesel representam 47% do total em 2010. Um ponto de destaque é que 14% do CO2 emitido no estado do Rio de Janeiro em 2010 foi proveniente de biocombustíveis (etanol anidro, etanol hidratado e biodiesel) e estas emissões foram ou serão absorvidas pelas plantações de matérias primas. Este percentual de emissões por biocombustíveis tende a aumentar para 20% em 2030.

Com base nos resultados obtidos é possível subsidiar políticas públicas voltadas para promover o desenvolvimento de baixo carbono no setor de transporte, destacando-se o uso de biocombustíveis, uso mais eficiente de modos que transportam grande quantidade de passageiros/km, como é o caso de metrô e trem, melhoria da infraestrutura de transportes, medidas reguladoras do uso do automóvel particular como



controle de acesso por meio de taxação ou restrição de vagas, o estímulo ao uso de veículos híbridos (combustível/eletricidade) e elétricos *plug in*.

No caso do transporte de carga, uma das principais ações seria a transferência do uso de modos de menor capacidade (rodoviário) para modos de maior capacidade (aquaviário, ferroviário e dutoviário)

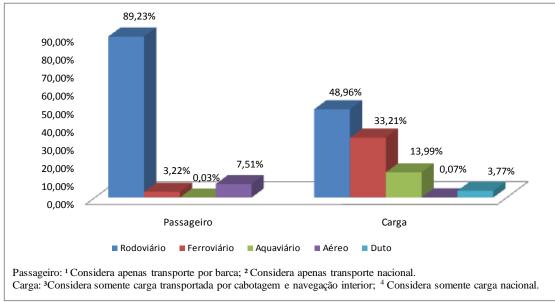
Observa-se na análise dos resultados que a emissão dos poluentes inventariados, com exceção do CO2, vem diminuindo no decorrer dos últimos anos. Essa constatação é observada também nas estimativas realizadas para o ano de 2030 e grande parte deste resultado é proveniente das ações de controle implementadas no Brasil, como o PROCONVE e o PROMOT.

No caso do CO2 observa-se previsão de aumento para os próximos anos até 2030. Isso se deve ao fato de que as projeções consideram que o consumo de combustíveis fósseis continue crescendo acompanhando o desenvolvimento econômico do país. Portanto, é necessário que se desenvolvam ações para a mitigação deste, que é o principal gás de efeito estufa.

A realização deste inventário pode vir a auxiliar na melhoria das condições do setor de transporte, no que diz respeito as emissões atmosféricas. Também fornece um panorama geral de modo que seja possível a criação e implementação de políticas estaduais e nacionais para a diminuição da poluição, que estejam vinculadas ao uso dos veículos, tais como, melhoria de tecnologia, aumento da qualidade de combustíveis, adequação da matriz de transportes entre outras.



#### **APRESENTAÇÃO**


Este relatório faz parte do Projeto COPPETEC 14590, previsto no Termo de Referência do Contrato nº 010/2011, relativo ao Projeto Estruturação do Embasamento Técnico para Preparação de Estratégia de Economia Verde para a Conferência Rio + 20.

Fundamentado pelo processo nº E-07/000.610/2010, considera como parte dos objetivos específicos a elaboração do Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro (IEAVAERJ), e apresenta a metodologia utilizada para sua execução, os resultados obtidos, ações e políticas para mitigação e conclusões a respeito dos resultados.



#### 1. INTRODUÇÃO

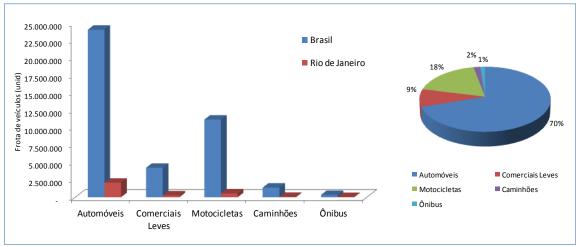
Ao observar a distribuição modal do transporte de passageiros e carga no Brasil (Figura 1), verifica-se que o transporte rodoviário predomina em ambos.



Nota: Percentuais calculados com base em dados fornecidos em pass.km e t.km. Fonte: Elaboração própria com base em FIPE (2011), ANTT (2009), ANTAQ (2009), ANTP (2009) e ANAC (2009).

**Figura 1:** Matriz de transporte motorizado - Brasil 2009.

Tal fato, aliado a dependência do consumo de combustíveis fósseis, segundo EPE (2010) por este modo de transporte (cerca de 81% do total consumido no setor de transportes), acarreta em grande volume de emissões de poluentes atmosféricos locais e globais.


O setor de transportes é responsável por cerca de 33% das emissões nacionais de gases de efeito estufa (MME, 2006). Analisando somente o setor de transportes e os modos que o compõe o rodoviário foi responsável por cerca de 90% das emissões de CO<sub>2</sub>, principal gás de efeito estufa, no ano de 2007.

Em função da importância do modo rodoviário no contexto de emissões atmosféricas há a necessidade de maior aprofundamento e conhecimento dos fatores que influenciam em sua participação no cenário brasileiro. Diante disto, os estados que compõe a federação brasileira precisam realizar seus inventários de emissões para identificar sua participação no cenário nacional e serem capazes de identificar ações de mitigação.

O Rio de Janeiro possui uma frota rodoviária que em 2010 representou cerca de 9% dos automóveis da frota nacional, 6% dos comerciais leves, 5% das motocicletas, 4% dos caminhões e como categoria mais representativa os ônibus que representam 12% do total brasileiro. No geral a frota fluminense soma 7% da frota do país.



A Figura 2 mostra a relação da frota do Estado do Rio de Janeiro em relação a frota de veículos do Brasil, para o ano de 2010. Além disso, na Figura 2 é possível verificar a divisão percentual da frota de veículos do Estado do Rio de Janeiro. Destacam-se os automóveis e motocicletas que juntos somam 88% da frota.



**Figura 2:** Comparação da frota do Rio de Janeiro com a frota do Brasil e Divisão percentual da frota fluminense – ano de 2010.

Com o intuito de melhor conhecer a realidade do Estado do Rio de Janeiro, este relatório apresenta o Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro elaborado com o objetivo de identificar e hierarquizar as diferentes fontes que contribuem para as emissões de poluentes atmosféricos, identificar os principais poluentes atmosféricos emitidos no Estado do Rio de Janeiro, estimar as emissões totais destes poluentes. Deste modo, este os resultados deste inventário é possível comparar as emissões do Estado do Rio de Janeiro e sua participação com relação às emissões brasileiras, provendo assim, informações para a criação de medidas de controle que permitam a melhoria da qualidade do ar.

Face ao exposto, este relatório tem por objetivo apresentar a metodologia adotada para a elaboração do Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro, os resultados do inventário após a aplicação da metodologia, ações e políticas de mitigação e principais resultados e conclusões.

Para a elaboração deste inventário foram estimadas as emissões de poluentes atmosféricos provenientes de veículos automotores rodoviários que se encontrem vinculados ao Estado do Rio de Janeiro. Com o intuito de observar a evolução de tais emissões, realizou-se o inventário de emissões de poluentes atmosféricos para o período de 1980 a 2010, com projeções realizadas para o período de 2011 a 2030.

Atendendo ao Termo de Referência e com o intuito de que o inventário elaborado possa ser comparável ao Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (INEAVAR), foram contabilizadas as emissões dos seguintes poluentes atmosféricos: CO, NO<sub>X</sub>, RCHO, NMHC, NMHC<sub>evap</sub>, CH<sub>4</sub>, MP, CO<sub>2</sub>.



Sendo assim, a partir desta introdução este relatório encontra-se dividido em mais 9 partes: (2) metodologia adotada para a elaboração do Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro, (3) frota circulante do Estado do Rio de Janeiro, (4) intensidade de uso do veículos, (5) fatores de emissão utilizados, (6) resultados obtidos com a aplicação da metodologia (7) recomendações para políticas de transporte, (8) considerações finais, recomendações e limitações, (9) referências bibliográficas utilizadas e (10) Anexos contendo o detalhamento dos cálculos, levantamentos e estimativas realizadas.



# 2. METODOLOGIA UTILIZADA PARA A ELABORAÇÃO DO INVENTÁRIO DE EMISSÕES ATMOSFÉRICAS POR VEÍCULOS AUTOMOTORES DO ESTADO DO RIO DE JANEIRO

Para a elaboração do Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro (IEAVAERJ), assim como o Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (INEAVAR), utilizouse a metodologia *bottom-up*.

A metodologia *bottom-up* tem por característica quantificar e identificar a emissão de poluentes de forma desagregada, permitindo assim a gestão individualizada de cada fonte. Assim, as emissões atmosféricas provenientes dos veículos automotores foram calculadas conforme Equação 1.

$$E_{M,C}^{A,P} = \sum_{M=1}^{m} \sum_{C=1}^{n} Fr_{A,M,C} * Iu_{Ajust} * Fe_{P,A,M,C} * Fe_{P,A,M,C}$$
 Equação 1

Onde:

E = Emissão atmosférica proveniente de veículos automotores, por ano calendário, poluente, ano modelo do veículo considerado e combustível utilizado;

A = Ano calendário

P = Poluente

M = Ano modelo do veículo

C = Combustível

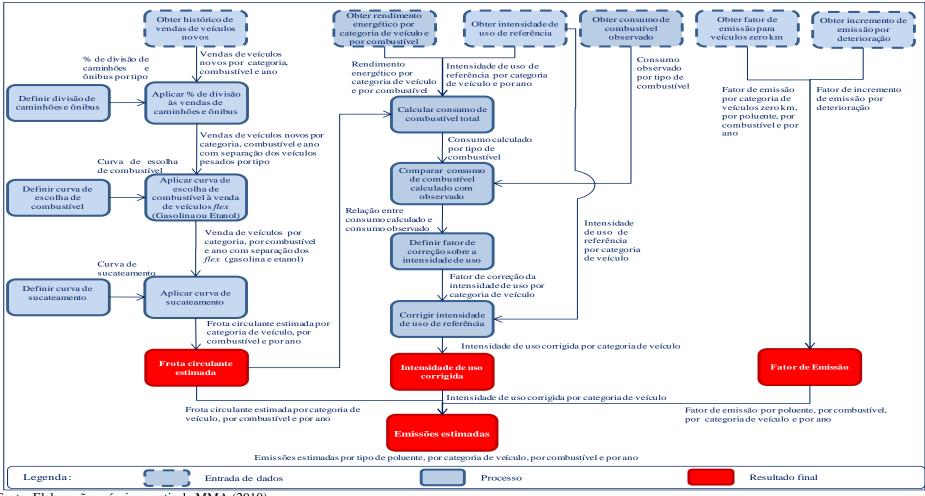
Fr = Frota circulante<sup>3</sup> estimada, expressa em número de veículos, variando de acordo com o ano calendário, o ano modelo do veículo considerado e o combustível utilizado.

Iu<sub>Ajust</sub> = Intensidade de uso ajustada, expressa em quilometragem anual percorrida (km/ano), variando de acordo com o ano calendário, o ano modelo do veículo considerado e o combustível utilizado.

Fe = Fator de emissão, expresso em g/km, variando de acordo com o poluente a ser analisado, o ano calendário, o ano modelo do veículo considerado e o combustível utilizado.

#### 2.1. Procedimento para Cálculo das Emissões Atmosféricas

Conforme pode ser verificado na Equação 1, para o cálculo das emissões faz-se necessário a identificação de três principais conjuntos de dados: (1) frota circulante (Fr), (2) intensidade de uso (Iu), e (3) fator de emissão (Fe).


A elaboração de um inventário de emissões de poluentes atmosféricos é uma atividade intensiva em dados e em uma situação ideal, os dados de frota, intensidade de uso e fatores de emissão deveriam ser observados/medidos em campo. Porém, a experiência mencionada pela equipe que elaborou o INEAVAR (MMA, 2011) mostra que esta situação ideal é impraticável, em função das limitações de recurso e tempo, sendo usual e aceitável que se estime estes dados por meio de algum procedimento.

\_

<sup>&</sup>lt;sup>3</sup> Entende-se por frota circulante a melhor estimativa de frota vinculada ao Estado do Rio de Janeiro que será usada como base para a estimativa das emissões de poluentes atmosféricos.



A Figura 3 apresenta o procedimento utilizado para estimativa da frota, intensidade de uso e fatores de emissão, o detalhamento de cada um desses itens será apresentado nos itens 3, 4 e 5 respectivamente. O resultado deste procedimento será o total de emissões por tipo de poluente, categoria de veículo, por combustível e por ano.



Fonte: Elaboração própria a partir de MMA (2010).

Figura 3: Procedimento para cálculo das emissões.



### 3. FROTA CIRCULANTE ESTIMADA DE VEÍCULOS DO ESTADO DO RIO DE JANEIRO

A frota circulante estimada anual é caracterizada pela quantidade de veículos que estão em circulação no Estado do Rio de Janeiro em determinado ano. A frota é composta por veículos de categorias, modelos e idades diferentes e que utilizam diferentes combustíveis.

Para o cálculo das emissões é importante obter a frota desagregada por categorias e combustível utilizado, uma vez que os fatores que determinam as emissões, como a intensidade de uso e os fatores de emissão são diferentes para cada uma delas.

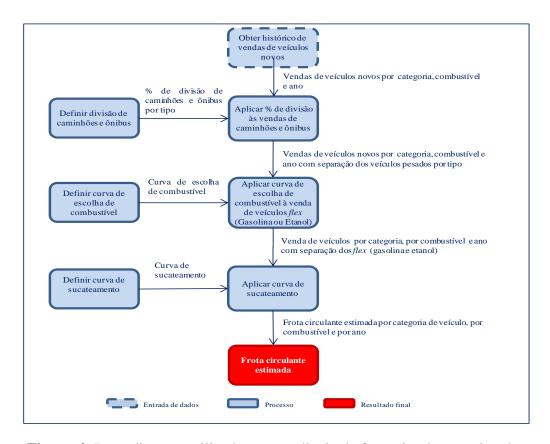
Para a definição das categorias de veículos adotadas neste inventário considerou-se as seguintes simplificações:

- Não foram considerados caminhões e ônibus do ciclo Otto, os quais representam cerca de 2,9% e 4,1%, respectivamente, dos veículos existentes no cadastro do DETRAN, conforme ANEXO I.
- Não foram considerados automóveis do ciclo Diesel, visto que estes representam apenas 0,04% dos automóveis existentes no cadastro do DETRAN, conforme ANEXO I, além disso, não foram disponibilizados fatores de emissão para tal categoria de veículo.
- Em virtude de não serem disponibilizados fatores de emissão para micro-ônibus urbanos e rodoviários, estes foram contabilizados nas categorias ônibus urbanos e ônibus rodoviários, respectivamente.
- Não foram considerados automóveis e comerciais leves movidos a etanol hidratado para o período anterior a 1970, visto que estes somente começaram a serem comercializados a partir desta data.
- Não foram considerados automóveis e comerciais leves movidos a gás natural veicular para o período anterior a 1992, período a partir do qual foi possível obter informações sobre as conversões.

A Tabela 1 apresenta as categorias de veículos desagregadas por categoria de veículo e combustível, considerada neste estudo.



**Tabela 1:** Categorias de veículos consideradas neste estudo para estimativa da frota.


| Categorias                         | Motor (1) | Combustível      | Definição                                                           |  |  |
|------------------------------------|-----------|------------------|---------------------------------------------------------------------|--|--|
|                                    | Otto      | Gasolina C       |                                                                     |  |  |
| A desired to                       |           | Etanol hidratado | Veículo automotor destinado ao transporte de pessoas com capacidade |  |  |
| Automóveis                         |           | Flex Fuel        | de até oito pessoas, excluindo o condutor.                          |  |  |
|                                    |           | GNV              | Conductor.                                                          |  |  |
|                                    | Otto      | Gasolina C       |                                                                     |  |  |
|                                    |           | Etanol hidratado | Veículo automotor destinado ao                                      |  |  |
| Veículos comerciais leves          |           | Flex Fuel        | transporte de pessoas ou cargas, com                                |  |  |
|                                    |           | GNV              | peso bruto total (PBT) de até 3,5t.                                 |  |  |
|                                    | Diesel    | Diesel           |                                                                     |  |  |
| Motocicletas                       | Otto      | Gasolina C       | Veículo automotor de duas rodas, com                                |  |  |
| iviotocicietas                     | Otto      | Flex Fuel        | ou sem <i>side-car</i> , dirigido em posição montada.               |  |  |
| Caminhões leves (3,5t < PBT < 10t) |           | Diesel           | Veículo automotor destinado ao                                      |  |  |
| Caminhões médios (10t < PBT < 15t) | Diesel    |                  | transporte de carga, com carroceria e<br>PBT superior a 3,5t.       |  |  |
| Caminhões pesados (PBT ≥ 15t)      |           |                  |                                                                     |  |  |
| Ônibus urbanos                     | Diesel    | Diesel           | Vernula automatan da transmenta adlativa                            |  |  |
| Ônibus rodoviários                 | DIESEI    | Diesei           | Veículo automotor de transporte coletivo.                           |  |  |

Nota: (1) Os combustíveis gasolina, etanol e GNV são adequados a motores de combustão de ignição por centelhamento (motores do ciclo Otto), já o óleo diesel é um combustível adequado para motores de combustão interna de ignição por compressão (motores do ciclo Diesel).

### 3.1. Procedimentos adotados para estimar a frota circulante de veículos do Estado do Rio de Janeiro

A da frota circulante do Estado do Rio de Janeiro foi estimada seguindo o procedimento apresentado na Figura 4.





**Figura 4:** Procedimento utilizado para o cálculo da frota circulante estimada.

Para a definição do perfil da frota circulante utilizou-se os dados de cadastro de veículos fornecidos pelo DETRAN-RJ (2011), os quais foram considerados como equivalentes às vendas de veículos fornecidos pela ANFAVEA (2011) (ANEXO II) e ABRACICLO (2011) (ANEXO III), após comparação, conforme ANEXO IV.

Tais dados foram obtidos por categoria de veículo (automóvel, comerciais leves, motocicletas, caminhões e ônibus), combustível (gasolina, etanol hidratado, *flex fuel*, GNV e diesel) e ano-modelo (período de 1957 a 2010).

Para determinar o percentual de veículos *flex fuel* utilizando gasolina C e o percentual de veículos *flex fuel* utilizando etanol hidratado foi elaborada uma curva de escolha de combustível que tem como principal parâmetro a relação de preço entre a gasolina e o etanol, conforme ANEXO VII.

Em virtude dos dados de veículos pesados fornecidos pelo DETRAN-RJ serem agregados em caminhões e ônibus e os dados de intensidade de uso, rendimento e fator de emissão serem diferenciados para cada uma das categorias (caminhão leve, médio e pesado, ônibus urbanos e rodoviário) foi necessário, para o cálculo das emissões, desagregá-los por categoria. Sendo assim, a Tabela 2 apresenta a divisão dos caminhões em leves, médios e pesados e dos ônibus em urbanos e rodoviários. Tal divisão foi



elaborada com base em Recheder e Fonseca (2003 e ANFAVEA (2010), conforme ANEXO VIII.

**Tabela 2:** Percentuais utilizados para divisão dos caminhões por tipo.

| Ano      | Pesado | Médio | Leve | Ano       | Pesado | Médio | Leve |
|----------|--------|-------|------|-----------|--------|-------|------|
| Até 1970 | 10%    | 78%   | 12%  | 1991      | 37%    | 22%   | 42%  |
| 1971     | 12%    | 73%   | 15%  | 1992      | 36%    | 23%   | 41%  |
| 1972     | 13%    | 68%   | 19%  | 1993      | 36%    | 23%   | 41%  |
| 1973     | 14%    | 66%   | 20%  | 1994      | 35%    | 24%   | 41%  |
| 1974     | 15%    | 61%   | 24%  | 1995      | 35%    | 24%   | 41%  |
| 1975     | 17%    | 57%   | 26%  | 1996      | 36%    | 23%   | 41%  |
| 1976     | 18%    | 54%   | 28%  | 1997      | 37%    | 22%   | 41%  |
| 1977     | 19%    | 50%   | 31%  | 1998      | 39%    | 19%   | 42%  |
| 1978     | 20%    | 47%   | 32%  | 1999      | 42%    | 17%   | 41%  |
| 1979     | 24%    | 43%   | 34%  | 2000      | 44%    | 16%   | 40%  |
| 1980     | 25%    | 40%   | 35%  | 2001      | 46%    | 15%   | 39%  |
| 1981     | 27%    | 37%   | 36%  | 2002      | 48%    | 14%   | 38%  |
| 1982     | 29%    | 34%   | 37%  | 2003      | 51%    | 13%   | 36%  |
| 1983     | 34%    | 29%   | 37%  | 2004      | 56%    | 11%   | 33%  |
| 1984     | 38%    | 24%   | 38%  | 2005      | 55%    | 11%   | 34%  |
| 1985     | 40%    | 23%   | 37%  | 2006      | 52%    | 13%   | 36%  |
| 1986     | 39%    | 23%   | 38%  | 2007      | 57%    | 11%   | 32%  |
| 1987     | 39%    | 23%   | 38%  | 2008      | 62%    | 10%   | 28%  |
| 1988     | 38%    | 23%   | 39%  | 2009      | 60%    | 10%   | 30%  |
| 1989     | 38%    | 22%   | 40%  | De 2010   | 60%    | 10%   | 30%  |
| 1990     | 37%    | 21%   | 41%  | em diante | 00%    | 10/6  | 30/6 |

Fonte: Elaboração própria com base em Rechder e Fonseca (2003) e ANFAVEA (2010).

Para a estimativa da frota circulante foram aplicadas taxas de sucateamento de veículos aos dados de primeiro licenciamento fornecidos pelo DETRAN-RJ. Para os automóveis, comerciais leves do ciclo Otto foram adotadas as mesmas curvas de sucateamentos utilizadas e disponibilizadas pelo INEAVAR (MMA, 2011).

Para as motocicletas foi elaborada uma curva de sucateamento com base nas taxas anuais de sucateamento fornecidas pelo INEAVAR (MMA, 2011). A Figura 5 apresenta as curvas de sucateamento utilizadas para os veículos do ciclo Otto. Maiores detalhes podem ser verificados no ANEXO VI.



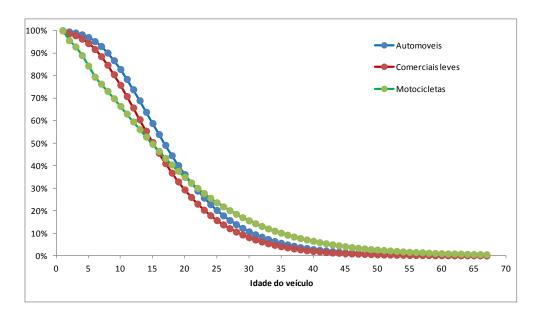



Figura 5: Curva de sucateamento para veículos do ciclo Otto.

Em relação aos veículos de ciclo Diesel, foi necessário adequar as curvas de sucateamento utilizadas pelo INEAVAR (MMA, 2010) à realidade do Estado do Rio de Janeiro. A Figura 6 apresenta as curvas de sucateamento adotadas neste estudo, o detalhamento deste processo encontra-se descrito no ANEXO VI.

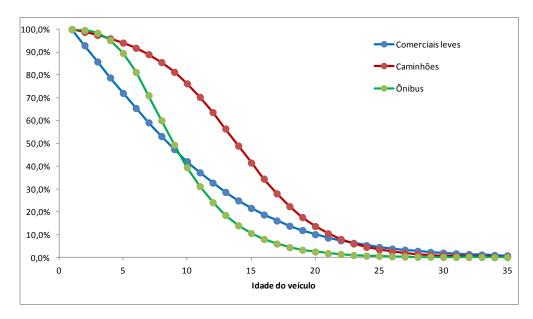



Figura 6: Curvas de sucateamento para veículos do ciclo Diesel.

Desse modo, a partir dos licenciamentos anuais, fornecidos pelo DETRAN-RJ, e da curva de sucateamento em função da idade, específica para cada categoria de veículos foi possível estimar a frota circulante para cada ano.



A frota de automóveis e comerciais leves convertidos a GNV foi estimada considerando os dados de veículos movidos a GNV fornecidos pelo DETRAN-RJ (2011) e os dados de conversão de veículos a GNV por ano, fornecidos pela CEG (2011) e GASNET (2011), conforme ANEXO V. Os veículos considerados como convertidos para GNV foram retirados da frota a qual pertenciam originalmente e passaram a ser considerados como frota GNV, com o intuito de evitar contagem dupla de veículos.

### 3.2. Evolução histórica da frota circulante estimada de veículos do Estado do Rio de Janeiro – 1980 a 2010.

As estimativas da frota de veículos do Estado do Rio de Janeiro mostram um crescimento contínuo desde 1980, atingindo cerca de 3 milhões de veículos em 2010. Sendo que, nas duas últimas décadas, observou-se um crescimento de motocicletas quatro vezes maior do que o dos automóveis. Em 2010, o transporte individual (automóveis e motocicletas) representava mais de 88% da frota de veículos (Figura 7). Além disso, ônibus e caminhões representam apenas 3% de toda a frota de veículos. A evolução da frota estimada para o Estado do Rio de Janeiro encontra-se no ANEXO X.

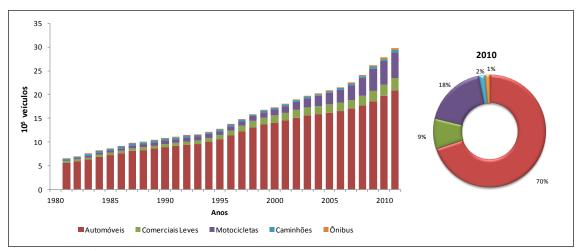



Figura 7: Evolução da frota estimada de veículos por categoria.

Em 2010, a estimativa de frota de veículos pesados indica que predominam os caminhões (58%). Quando avaliadas as categorias de forma individual destacam-se os ônibus urbanos (38%) e os caminhões pesados (30%) (Figura 8).



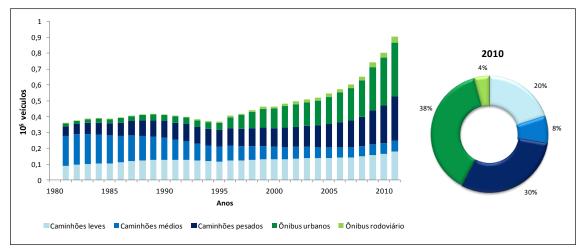



Figura 8: Evolução da frota estimada de veículos pesados por categoria.

Ao analisar somente os veículos pesados (caminhões e ônibus), verifica-se que no início da década de 80, os caminhões médios destacavam em relação aos caminhões leves e pesados. Ao longo dos trinta anos analisados é possível perceber que a tipologia de veículos adotada pelo setor de transporte de carga se modificou, buscando veículos que melhor se adequassem as operações de transferência (pesado) e distribuição (leve).

Ao adotar este procedimento foi possível realizar um acompanhar do perfil da frota por idade, conforme pode ser observado na Figura 9.

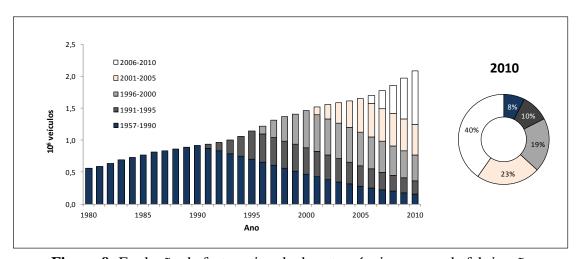



Figura 9: Evolução da frota estimada de automóveis por ano de fabricação.

Este estudo considera automóveis dedicados a gasolina C, dedicados a etanol hidratado, *flex fuel* (a partir de 2003) e convertidos a GNV (a partir de 1992) o qual possui grande representatividade no Estado do Rio de Janeiro (24%).

A partir da introdução dos veículos *flex fuel* no mercado, em 2003, tem se observado um crescimento destes e uma redução dos veículos dedicados a gasolina C. Em 2010, a frota de veículos dedicados a gasolina representava 38% e a frota de veículos *flex fuel* 35% (Figura 10).



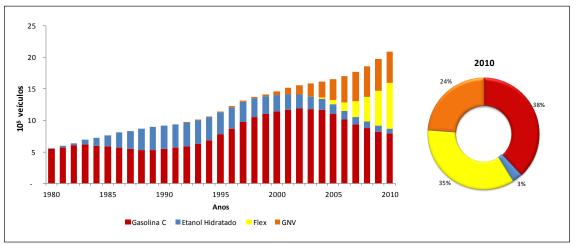



Figura 10: Evolução da frota estimada de automóveis por tipo de combustível.

No que tange a frota de veículos comerciais leves pode-se verificar que predominam os veículos movidos a GNV (34%), utilizados para o transporte complementar de passageiros e carga, seguindo-se os veículos dedicados a gasolina (31%) e os *flex fuel* (22%), conforme Figura 11.

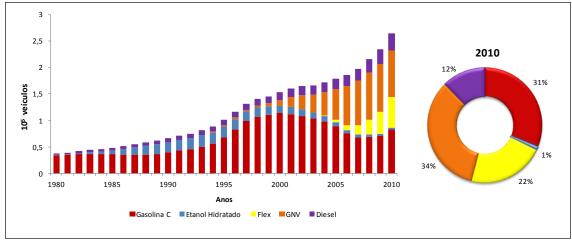



Figura 11: Evolução da frota de comerciais leves por tipo de combustível.

A frota de motocicletas é formada em sua grande maioria por motocicletas dedicadas a gasolina C (em 2010 cerca de 96%). Em 2009, teve início a venda de motocicletas *flex fuel*, no entanto esta representa ainda uma pequena parcela da frota de motocicletas (4%), conforme é possível observar na Figura 12.



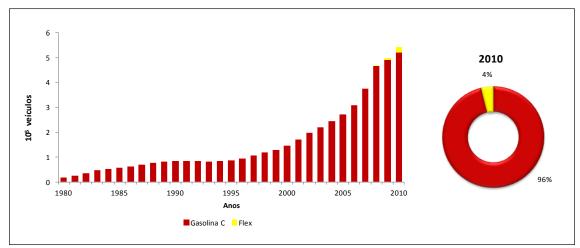



Figura 12: Evolução da frota estimada de motocicletas por tipo de combustível.

A frota de veículos do Estado do Rio de Janeiro pode também ser avaliada em relação as fases do Programa de Controle da Poluição do Ar por Veículos Automotores (PROCONVE) e do Programa de Controle da Poluição do Ar por Motocicletas e Similares (PROMOT), os quais se encontram detalhados no ANEXO XIV. Nesse sentido, ao se avaliar a frota de automóveis pode-se verificar que 44% desta refere-se à fase L3, que teve início em 1997, 15% refere-se à fase L4 e 19% à fase L5 (Figura 13).

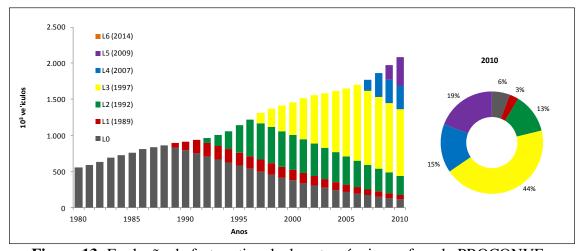



Figura 13: Evolução da frota estimada de automóveis por fase do PROCONVE.

A frota de comerciais leves do ciclo Otto, em 2010 apresenta um comportamento similar a frota de automóveis, com 40% dos veículos referentes à fase L3 do PROCONVE, 18% a fase L4 e 26% a fase L5 (Figura 14).



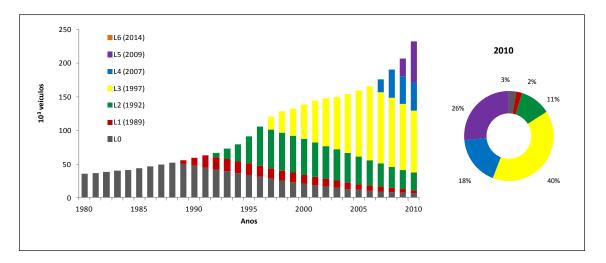
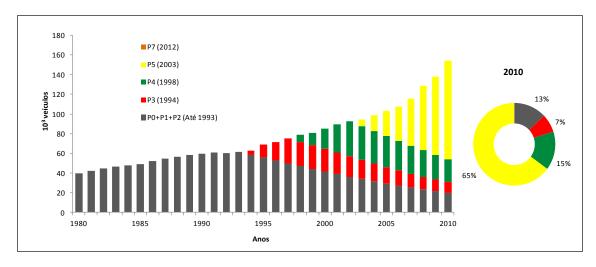




Figura 14: Evolução da frota estimada de comerciais leves por fase do PROCONVE.

No que tange aos veículos do ciclo Diesel, verifica-se que 65% da frota refere-se a fase P5 do PROCONVE, a qual entrou em vigor em 2003 (Figura 15).



**Figura 15:** Evolução da frota estimada de veículos do ciclo Diesel por fase do PROCONVE.

Em relação às motocicletas, regulamentadas pelo PROMOT, conforme pode-se observar na Figura 16, 67% de sua frota refere-se a veículos da fase M2 e M3.



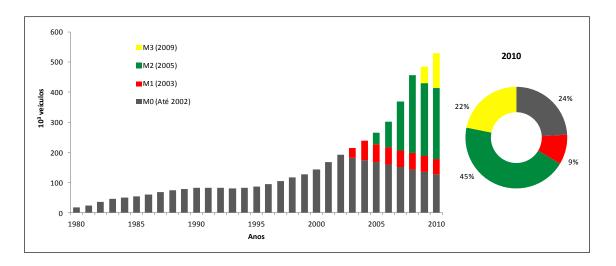



Figura 16: Evolução da frota estimada de motocicletas por fase do PROCONVE.

#### 4. INTENSIDADE DE USO

A intensidade de uso é a distância média percorrida para cada um dos veículos (por categoria) considerados na frota circulante estimada por unidade de tempo (ano). Para a definição da intensidade de uso a ser utilizada para o cálculo das emissões considerouse o procedimento apresentado na Figura 17.

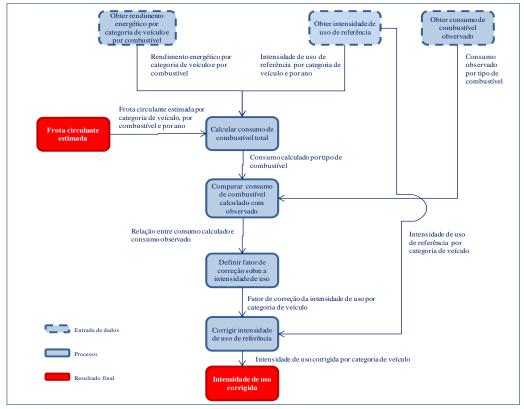
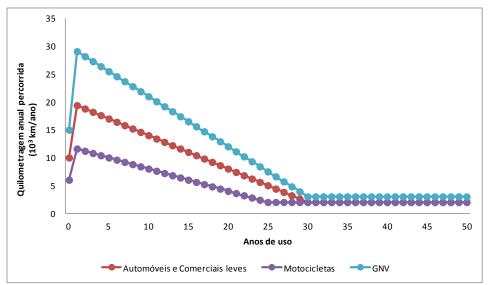


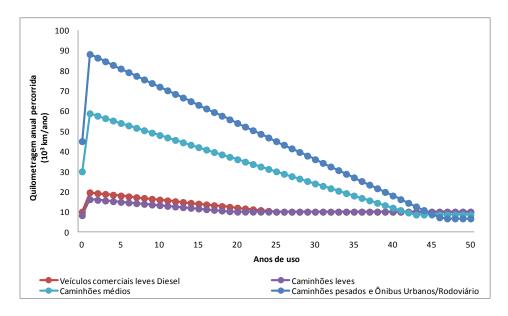

Figura 17: Procedimento para cálculo da intensidade de uso corrigida.




Para os automóveis, comerciais leves (ciclo Otto e ciclo Diesel) e motocicletas considerou-se a mesma intensidade de uso de referência utilizada pelo INEAVAR (MMA, 2011), com exceção dos veículos convertidos a GNV. Para automóveis e comerciais leves convertidos a GNV, em virtude da maior quilometragem percorrida, considerou-se uma intensidade de uso de referência 50% maior do que a utilizada para os demais automóveis e comerciais leves.

No que tange aos ônibus urbanos, foram utilizadas as mesmas intensidades de referência fornecidas pelo INEAVAR. Para os ônibus rodoviários considerou-se como quilometragem inicial 90.000 km/ano, visto que no Estado do Rio de Janeiro estes se referem a ônibus de classe especial (tipo tarifa) utilizado na região metropolitana para o fornecimento de serviço diferenciado ou para o transporte intermunicipal restrito ao próprio estado (FETRANSPOR, 2011).

Para os caminhões leves, verificou-se com base em AMBEV (2011) ser possível utilizar os mesmos valores adotados pelo INEAVAR (MMA, 2011), visto que em ambos os casos tal veículo é predominantemente utilizado para distribuição física em área urbana. No que tange aos caminhões médios e pesados, adotou-se como valores iniciais de intensidade de uso de referência 60.000 e 90.000 km/ano, com base em Cachiolo (2011). Foi necessário adotar quilometragens diferentes das utilizadas pelo INEAVAR, uma vez que o nesse estudo o transporte realizado por tais caminhões restringe-se a área urbana e/ou ao transporte intermunicipal.


As Figuras 18 e 19 apresentam a intensidade de uso de referência adotada nesse estudo. Os valores detalhados encontram-se no ANEXO XI.



Nota: No ano 0 considera-se a metade da quilometragem inicial visto que a venda dos veículos é distribuída ao longo dos meses do ano.

Figura 18: Intensidade de uso para veículos do ciclo Otto





Nota: No ano 0 considera-se a metade da quilometragem inicial visto que a venda dos veículos é distribuída ao longo dos meses do ano.

Figura 19: Intensidade de uso para veículos do ciclo Diesel.

## 4.1. Intensidade de Uso Ajustada

Por ser este item o que usualmente apresenta valores com maior incerteza e seguindo o procedimento adotado pelo INEAVAR (MMA, 2011), foram ajustados os valores de intensidade de uso com base no consumo de combustível observado para o transporte rodoviário no Estado do Rio de Janeiro (ANEXO XII).

A partir da intensidade de uso de referência de cada uma das categorias de veículos e do rendimento destes, foi estimado o consumo de cada tipo de combustível para o setor de transporte rodoviário, conforme Equação 2.

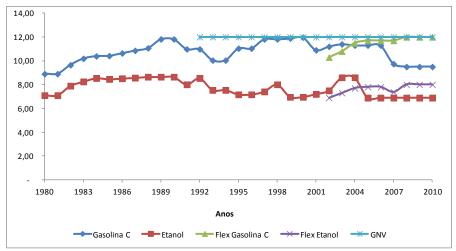
$$C_{estimado} = \sum_{j} Fr_{a,m,c} * Iu_{ref} * R_{a,m,c} * R_{a,m,c}$$
 Equação 2

#### Onde:

C<sub>estimado</sub>: Consumo estimado do combustível (c) (gasolina C, etanol hidratado, diesel ou GNV) por ano (a) em litros.

Fr: Frota de veículos por modelo (m), ano (a) e combustível (c) em unidades.

Iu<sub>ref</sub>: Intensidade de uso de referencia do veículo por modelo (m), ano (a) e combustível (c) em quilômetros.


R: Rendimento do veículo por modelo (m), ano (a) e combustível (c) em litros por quilômetros.



No que tange ao rendimento (km/l) dos veículos do ciclo Otto foram considerados os mesmos valores utilizados pelo INEAVAR (MMA, 2011). Para os automóveis e comerciais leves convertidos a GNV, considerou-se o rendimento de 12km/m³, conforme MMA (2011).

Já em relação aos veículos do ciclo Diesel, foram considerados os mesmos rendimentos adotados pelo INEAVAR (MMA, 2011)para os comerciais leves, ônibus urbanos e rodoviários. Para os caminhões verificou-se que os rendimentos fornecidos pelo INEAVAR não espelhavam a realidade do Estado do Rio de Janeiro. Desse modo, com base em Cachiolo (2011) e AMBEV (2011), considerou-se como valores de rendimento para as categorias caminhões leves, caminhões médios e caminhões pesados os valores, 3,9 km/l, 3,04 km/l e 2,61 km/l respectivamente.

A Figura 20 e 21 apresentam os gráficos referentes os rendimentos adotados neste estudo. Maiores detalhes podem ser verificados no ANEXO XIII.



**Figura 20:** Rendimentos adotados para os veículos do ciclo Otto.

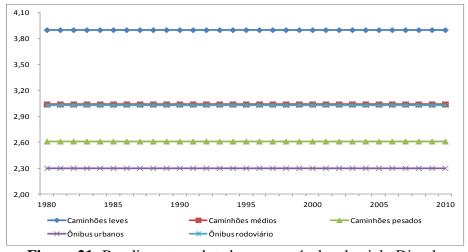



Figura 21: Rendimentos adotados para veículos do ciclo Diesel.



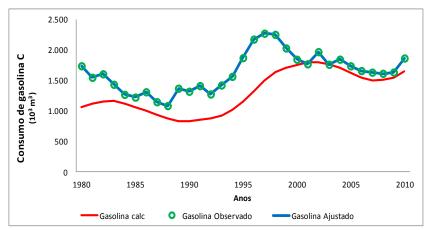
O consumo estimado foi comparado com os dados da ANP (2011) e do BEERJ (2010) de consumo observado no Estado do Rio de Janeiro para cada tipo de combustível. O ajuste da intensidade de uso foi realizado conforme Equação 3. O cálculo do ajuste foi feito para o período de 1980 a 2010.

$$IU_{Ajust} = Iu_{ref} * \frac{C_{observado}}{C_{estimado}}$$
 Equação 3

#### Onde:

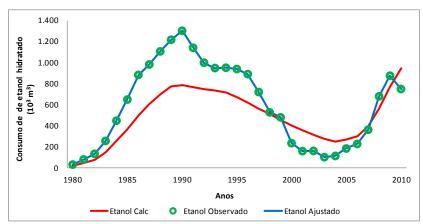
Iu<sub>Ajust</sub>: Intensidade de uso de referencia ajustada do veículo por modelo (m), ano (a) e combustível (c) em quilômetros.

Cobservado: Consumo do combustível (c) por ano (a).

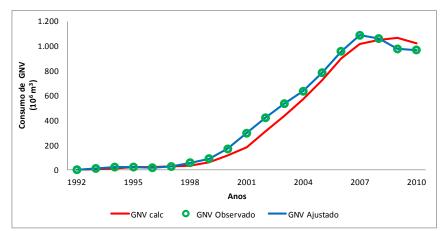

Após calcular a intensidade de uso ajustada, procedeu-se o ajuste do consumo, conforme Equação 4.

$$C_{ajustado} = \sum_{j} Fr_{a,m,c} * Iu_{Ajust} * R_{a,m,c} * R_{a,m,c}$$
 Equação 4

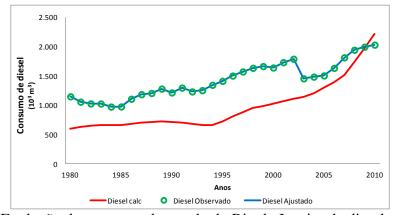
#### Onde:


C<sub>ajustado</sub>: Consumo do combustível (c) por ano (a) ajustado com base na intensidade de uso ajustada.

As Figuras 22, 23, 24 e 25 apresentam a evolução do consumo observado, estimado e ajustado para os combustíveis gasolina C, etanol hidratado, GNV e diesel, respectivamente, no período de 1980 a 2010.




**Figura 22:** Evolução do consumo do estado do Rio de Janeiro de gasolina C no transporte rodoviário.






**Figura 23:** Evolução do consumo do estado do Rio de Janeiro de etanol hidratado no transporte rodoviário.

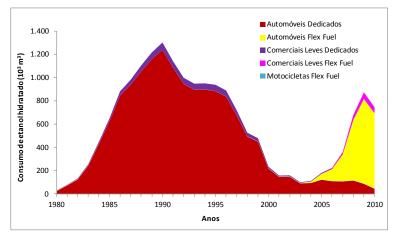


**Figura 24:** Evolução do consumo do estado do Rio de Janeiro de GNV no transporte rodoviário.

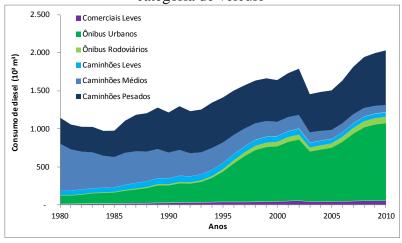


**Figura 25:** Evolução do consumo do estado do Rio de Janeiro de diesel no transporte rodoviário.

Nas Figuras 26, 27, 28 e 29 pode-se observar a evolução do consumo de combustível (gasolina C, etanol hidratado, GNV e diesel) por categoria de veículo.

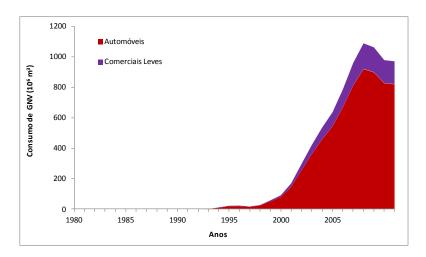






Nota: Considera-se veículo dedicado aquele que utiliza apenas um único combustível.

ra 26: Evolução do consumo de gasolina C no transporte rodoviário por cate

**Figura 26:** Evolução do consumo de gasolina C no transporte rodoviário por categoria de veículo




**Figura 27:** Evolução do consumo de etanol hidratado no transporte rodoviário por categoria de veículo



**Figura 28:** Evolução do consumo de diesel no transporte rodoviário por categoria de veículo





**Figura 29:** Evolução do consumo de GNV no transporte rodoviário por categoria de veículo

A intensidade de uso para cada categoria de veículos, ajustada a partir do fator de correção calculado com base no consumo observado, foi utilizada para o cálculo das emissões.

## 5. FATOR DE EMISSÃO

Os fatores de emissão de poluentes atmosféricos variam em função do poluente analisado, da categoria do veículo, do tipo de combustível e do ano-modelo do veículo. Para definição dos fatores de emissão utilizados considerou-se o procedimento apresentado na Figura 30.

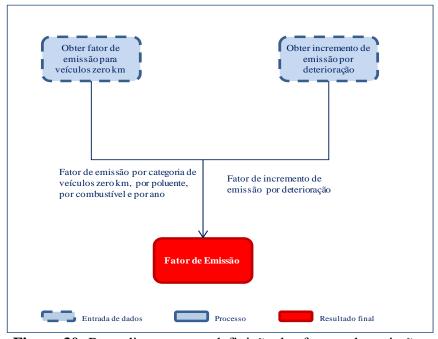



Figura 30: Procedimento para definição dos fatores de emissão.



Com o intuito de obter resultados comparáveis aos apresentados pelo INEAVAR<sup>4</sup> (MMA, 2011) optou-se por utilizar, sempre que possível, os mesmos fatores de emissão adotados por este.

## 5.1. Fatores de emissão para automóveis e comerciais leves do ciclo Otto

Para os automóveis e comerciais leves movidos a gasolina C e/ou etanol hidratado, foram calculadas as emissões para os poluentes CO,  $NO_x$ , RCHO, CH4, MP,  $NHMC_{escapamento}$  e  $NMHC_{evaporativo}$ .

Os poluentes CO, NOx, THC (CH4 e NMHC) e RCHO são regulamentados pelo PROCONVE. Em virtude disso, a CETESB realiza ensaios utilizados para a homologação dos veículos, de modo que são disponibilizados fatores de emissão médios (g/km) por ano de fabricação do veículo. Tais fatores foram utilizados pelo INEAVAR (MMA, 2011), optando-se por utilizá-los neste estudo também, conforme Tabela 3.

\_

<sup>&</sup>lt;sup>4</sup> Os fatores de emissão utilizados no INEAVAR (MMA,2011) foram obtidos principalmente da CETESB (2011), responsável por elaborar testes periódicos de emissões de veículos de linha por amostragem e disponibilizar fatores médios de emissão para os poluentes atmosféricos regulamentados.



**Tabela 3:** Fatores de emissão para automóveis e comerciais leves, em g/km.

|                   | 5. Tatores de emissa                                         | F            |               |                |                |                | <i>G</i>  |
|-------------------|--------------------------------------------------------------|--------------|---------------|----------------|----------------|----------------|-----------|
| Ano               | Categoria                                                    | CO (g/km)    | NOx<br>(g/km) | RCHO (g/km)    | NMHC<br>(g/km) | CH4<br>(g/km)  | MP (g/km) |
| Até 1983          | Veíc. Leve - Gasolina C                                      | 33           | 1,4           | 0,05           | 2,55           | 0,45           | 0,0024    |
|                   | Veíc. Leve - Etanol hidratado                                | 18           | 1             | 0,16           | 1,36           | 0,24           | - 0.0024  |
| 1984-1985         | Veíc. Leve - Gasolina C                                      | 28           | 1,6           | 0,05           | 2,04           | 0,36           | 0,0024    |
|                   | Veíc. Leve - Etanol hidratado<br>Veíc. Leve - Gasolina C     | 16,9<br>22   | 1,2<br>1,9    | 0,18<br>0,04   | 1,36<br>1,7    | 0,24           | 0,0024    |
| 1986-1987         | Veíc. Leve - Gasonna C<br>Veíc. Leve - Etanol hidratado      | 16           | 1,8           | 0,04           | 1,36           | 0,3            | 0,0024    |
|                   | Veíc. Leve - Gasolina C                                      | 18,5         | 1,8           | 0,04           | 1,445          | 0,255          | 0,0024    |
| 1988              | Veíc. Leve - Etanol hidratado                                | 13,3         | 1,4           | 0,11           | 1,445          | 0,255          | -         |
| 1989              | Veíc. Leve - Gasolina C                                      | 15,2         | 1,6           | 0,04           | 1,36           | 0,24           | 0,0024    |
|                   | Veíc. Leve - Etanol hidratado                                | 12,8         | 1,1           | 0,11           | 1,36           | 0,24           | -         |
| 1990              | Veíc. Leve - Gasolina C Veíc. Leve - Etanol hidratado        | 13,3         | 1,4           | 0,04           | 1,19           | 0,21           | 0,0024    |
|                   | Veíc. Leve - Etanol Indratado  Veíc. Leve - Gasolina C       | 10,8<br>11,5 | 1,3           | 0,11           | 1,105<br>1,105 | 0,195<br>0,195 | 0,0024    |
| 1991              | Veíc. Leve - Etanol hidratado                                | 8,4          | 1             | 0,11           | 0,935          | 0,165          | -         |
| 1002              | Veíc. Leve - Gasolina C                                      | 6,2          | 0,6           | 0,013          | 0,51           | 0,09           | 0,0024    |
| 1992              | Veíc. Leve - Etanol hidratado                                | 3,6          | 0,5           | 0,35           | 0,51           | 0,09           | -         |
| 1993              | Veíc. Leve - Gasolina C                                      | 6,3          | 0,8           | 0,022          | 0,51           | 0,09           | 0,0024    |
|                   | Veíc. Leve - Etanol hidratado                                | 4,2          | 0,6           | 0,04           | 0,595          | 0,105          | -         |
| 1994              | Veíc. Leve - Gasolina C<br>Veíc. Leve - Etanol hidratado     | 4,6          | 0,7           | 0,036<br>0,042 | 0,451<br>0,514 | 0,149<br>0,186 | 0,0024    |
|                   | Veíc. Leve - Gasolina C                                      | 4,0          | 0,6           | 0,042          | 0,314          | 0,149          | 0,0024    |
| 1995              | Veíc. Leve - Etanol hidratado                                | 4,6          | 0,7           | 0,042          | 0,514          | 0,186          | -         |
| 1996              | Veíc. Leve - Gasolina C                                      | 3,8          | 0,5           | 0,019          | 0,3            | 0,1            | 0,0024    |
| 1996              | Veíc. Leve - Etanol hidratado                                | 3,9          | 0,7           | 0,04           | 0,44           | 0,16           | -         |
| 1997              | Veíc. Leve - Gasolina C                                      | 1,2          | 0,3           | 0,007          | 0,15           | 0,05           | 0,0011    |
|                   | Veíc. Leve - Etanol hidratado                                | 0,9          | 0,3           | 0,012          | 0,22           | 0,08           | - 0.0011  |
| 1998              | Veíc. Leve - Gasolina C Veíc. Leve - Etanol hidratado        | 0,79         | 0,23          | 0,004          | 0,105          | 0,035          | 0,0011    |
|                   | Veíc. Leve - Etanol Indratado  Veíc. Leve - Gasolina C       | 0,67<br>0,74 | 0,24          | 0,004          | 0,139<br>0,105 | 0,051          | 0,0011    |
| 1999              | Veíc. Leve - Etanol hidratado                                | 0,6          | 0,22          | 0,013          | 0,125          | 0,045          | -         |
| 2000              | Veíc. Leve - Gasolina C                                      | 0,73         | 0,21          | 0,004          | 0,098          | 0,032          | 0,0011    |
| 2000              | Veíc. Leve - Etanol hidratado                                | 0,63         | 0,21          | 0,014          | 0,132          | 0,048          | -         |
| 2001              | Veíc. Leve - Gasolina C                                      | 0,48         | 0,14          | 0,004          | 0,083          | 0,027          | 0,0011    |
|                   | Veíc. Leve - Etanol hidratado                                | 0,66         | 0,08          | 0,017          | 0,11           | 0,04           | - 0.0011  |
| 2002              | Veíc. Leve - Gasolina C Veíc. Leve - Etanol hidratado        | 0,43         | 0,12          | 0,004<br>0,017 | 0,083          | 0,027          | 0,0011    |
|                   | Veíc. Leve - Gasolina C                                      | 0,4          | 0,12          | 0,004          | 0,083          | 0,027          | 0,0011    |
| 2002              | Veíc. Leve - Etanol hidratado                                | 0,77         | 0,09          | 0,019          | 0,117          | 0,043          | -         |
| 2003              | Veíc. Leve - Flex - Gasolina C                               | 0,5          | 0,04          | 0,004          | 0,038          | 0,012          | 0,0011    |
|                   | Veíc. Leve - Flex - Etanol                                   | 0,51         | 0,14          | 0,02           | 0,11           | 0,04           | -         |
|                   | Veíc. Leve - Gasolina C                                      | 0,35         | 0,09          | 0,004          | 0,083          | 0,027          | 0,0011    |
| 2004              | Veíc. Leve - Etanol hidratado                                | 0,82         | 0,08          | 0,016          | 0,125          | 0,045          | 0.0011    |
|                   | Veíc. Leve - Flex - Gasolina C<br>Veíc. Leve - Flex - Etanol | 0,39<br>0,46 | 0,05          | 0,003          | 0,06           | 0,02           | 0,0011    |
|                   | Veíc. Leve - Gasolina C                                      | 0,34         | 0,09          | 0,004          | 0,103          | 0,037          | 0,0011    |
| 2005              | Veíc. Leve - Etanol hidratado                                | 0,82         | 0,08          | 0,016          | 0,125          | 0,045          | -         |
| 2005              | Veíc. Leve - Flex - Gasolina C                               | 0,45         | 0,05          | 0,003          | 0,083          | 0,027          | 0,0011    |
|                   | Veíc. Leve - Flex - Etanol                                   | 0,39         | 0,1           | 0,014          | 0,103          | 0,037          |           |
|                   | Veíc. Leve - Gasolina C                                      | 0,33         | 0,08          | 0,002          | 0,06           | 0,02           | 0,0011    |
| 2006              | Veíc. Leve - Etanol hidratado Veíc. Leve - Flex - Gasolina C | 0,67<br>0,48 | 0,05          | 0,014          | 0,088          | 0,032          | 0,0011    |
|                   | Veíc. Leve - Flex - Gasonna C<br>Veíc. Leve - Flex - Etanol  | 0,48         | 0,05          | 0,003          | 0,075          | 0,025          |           |
|                   | Veíc. Leve - Gasolina C                                      | 0,33         | 0,08          | 0,002          | 0,061          | 0,02           | 0,0011    |
| 2007              | Veíc. Leve - Etanol hidratado                                | 0,67         | 0,05          | 0,014          | 0,088          | 0,032          | -         |
| 2007              | Veíc. Leve - Flex - Gasolina C                               | 0,48         | 0,05          | 0,003          | 0,075          | 0,025          | 0,0011    |
|                   | Veíc. Leve - Flex - Etanol                                   | 0,47         | 0,07          | 0,014          | 0,081          | 0,029          | -         |
|                   | Veíc. Leve - Gasolina C                                      | 0,37         | 0,039         | 0,0014         | 0,042          | 0,014          | 0,0011    |
| 2008              | Veíc. Leve - Etanol hidratado Veíc. Leve - Flex - Gasolina C | 0,67<br>0,51 | 0,05          | 0,014          | 0,088          | 0,032          | 0,0011    |
|                   | Veíc. Leve - Flex - Gasonna C<br>Veíc. Leve - Flex - Etanol  | 0,71         | 0,041         | 0,002          | 0,069          | 0,023          | -         |
|                   | Veíc. Leve - Gasolina C                                      | 0,3          | 0,02          | 0,0017         | 0,032          | 0,013          | 0,0011    |
| 2009              | Veíc. Leve - Etanol hidratado                                | -            | -             | -              | -              | -              | -         |
| 2009              | Veíc. Leve - Flex - Gasolina C                               | 0,33         | 0,03          | 0,0024         | 0,032          | 0,011          | 0,0011    |
|                   | Veíc. Leve - Flex - Etanol                                   | 0,56         | 0,032         | 0,0104         | 0,03           | 0,011          | -         |
| 2010              | Veíc. Leve - Gasolina C                                      | 0,23         | 0,02          | 0,0017         | 0,034          | 0,011          | 0,0011    |
| 2010<br>em diante | Veíc. Leve - Etanol hidratado                                | 0.33         | - 0.03        | 0.0024         | 0.032          | 0.011          | 0.0011    |
| em diante         | Veíc. Leve - Flex - Gasolina C<br>Veíc. Leve - Flex - Etanol | 0,33         | 0,03          | 0,0024         | 0,032          | 0,011          | 0,0011    |
| <u> </u>          | A (2011)                                                     | 0,50         | 0,032         | 0,0104         | 0,03           | 0,011          | -         |

Fonte: MMA (2011).



As emissões de MP geradas por veículos do ciclo Otto não são regulamentadas pelo PROCONVE, e por isso não são medidas nos ensaios de homologação. No entanto, com o intuito de manter o nível de comparação com o INEAVAR (MMA, 2011), considerou-se como fator de emissão de MP os dados utilizados por este (Tabela 3).

As condições de uso, o estado de manutenção e as condições ambientais, afetam os fatores de emissão. Em virtude disso, no caso dos veículos fabricados antes de 1995, os quais em sua maioria não eram equipados com catalisadores, considerou-se para os poluentes CO, NMHC<sub>escapamento</sub> e RCHO, um incremento de 0,000125% em relação ao fator de emissão do veículo novo para cada quilometro percorrido até atingir os 160.000 km, mantendo-se constante a partir desta quilometragem (MMA, 2011).

Para os veículos fabricados no período de 1996 a 2008, considerou-se um valor de incremento médio a cada 80.000 km rodados, conforme Tabela 4.

Tabela 4: Incremento médio de emissões por acúmulo de rodagem, em g/80.000km

| Combustível      | Poluentes |        |       |         |  |  |  |  |
|------------------|-----------|--------|-------|---------|--|--|--|--|
| Combustive       | СО        | CO Nox |       | RCHO    |  |  |  |  |
| Gasolina C       | 0,263     | 0,03   | 0,023 | 0,00065 |  |  |  |  |
| Etanol hidratado | 0,224     | 0,02   | 0,024 | 0,00276 |  |  |  |  |

Fonte: MMA (2011)

Como emissões evaporativas oriundas do sistema de alimentação de automóveis e comerciais leves do ciclo Otto, considerou-se as emissões diurnas  $(e_d)$ , as perdas em movimento  $(e_s)$  e as emissões evaporativas do veículo que ocorrem quando este encontra-se em repouso  $(e_r)$ .

O INEAVAR disponibiliza fatores de emissão diurnas ( $e_d$ ) em gramas por dia (g/dia) e os fatores de perdas em movimento ( $e_s$ ) e emissões evaporativas em repouso ( $e_r$ ) em gramas por viagens (g/viagens). Além disso, este considera três diferentes intervalos de temperatura (0 a 15 °C, 10 a 25 °C e 20 a 35 °C).

Para definir a(s) faixa(s) de temperatura que mais se adequa(m) à realidade do Estado do Rio de Janeiro realizou-se uma pesquisa junto ao Instituto Nacional de Meteorologia – INMET que forneceu um histórico de temperatura do período de 1961 até 1990 (Tabelas 6 e 7).

Ao analisar os valores mínimos e máximos de temperatura observou-se que 20% da média anual das temperaturas mínimas e 85% da média anual das temperaturas médias eram maiores ou iguais a 20 °C, conforme pode ser observado nas Tabelas 6 e 7.

Em virtude da sua representatividade nas temperaturas do Estado do Rio de Janeiro e pelo fato de possuir os maiores fatores de emissões evaporativos, optou-se por



considerar para o cálculo das emissões evaporativas realizado neste inventário, os fatores de emissão referentes a faixa de temperatura de 20-35 °C, conforme Tabela 5.

Tabela 5: Fatores de emissões evaporativas para automóveis e comerciais.

|              |                         | Temperatura: 20 - 35°C |                |                |  |  |  |  |
|--------------|-------------------------|------------------------|----------------|----------------|--|--|--|--|
| Ano - modelo | Combustível             | $e_d$                  | e <sub>s</sub> | e <sub>r</sub> |  |  |  |  |
|              |                         | (g/dia)                | (g/viagem)     | (g/viagem)     |  |  |  |  |
| Até 1989     | Gasolina C              | 5,65                   | 17,35          | 14,61          |  |  |  |  |
| Ate 1989     | Etanol hidratado        | 2,46                   | 7,54           | 6,35           |  |  |  |  |
| 1990         | Gasolina C              | 0,68                   | 2,03           | 0,16           |  |  |  |  |
| 1990         | Etanol hidratado        | 0,45                   | 1,35           | 0,07           |  |  |  |  |
| 1991         | Gasolina C              | 0,67                   | 2,03           | 0,16           |  |  |  |  |
| 1991         | Etanol hidratado        | 0,45                   | 1,35           | 0,07           |  |  |  |  |
| 1992         | Gasolina C              | 0,75                   | 1,25           | 0,16           |  |  |  |  |
| 1992         | Etanol hidratado        | 0,34                   | 0,56           | 0,07           |  |  |  |  |
| 1993         | Gasolina C              | 0,63                   | 1,07           | 0,16           |  |  |  |  |
| 1993         | Etanol hidratado        | 0,41                   | 0,69           | 0,07           |  |  |  |  |
| 1994         | Gasolina C              | 0,61                   | 0,99           | 0,16           |  |  |  |  |
| 1994         | Etanol hidratado        | 0,34                   | 0,56           | 0,07           |  |  |  |  |
| 1005         | Gasolina C              | 0,61                   | 0,99           | 0,16           |  |  |  |  |
| 1995         | Etanol hidratado        | 0,34                   | 0,56           | 0,07           |  |  |  |  |
| 1006         | Gasolina C              | 0,46                   | 0,74           | 0,16           |  |  |  |  |
| 1996         | Etanol hidratado        | 0,31                   | 0,49           | 0,07           |  |  |  |  |
| 1007         | Gasolina C              | 0,39                   | 0,61           | 0,16           |  |  |  |  |
| 1997         | Etanol hidratado        | 0,43                   | 0,67           | 0,07           |  |  |  |  |
| 1000         | Gasolina C              | 0,32                   | 0,49           | 0,16           |  |  |  |  |
| 1998         | Etanol hidratado        | 0,53                   | 0,8            | 0,07           |  |  |  |  |
|              | Gasolina C              | 0,31                   | 0,48           | 0,16           |  |  |  |  |
| 1999         | Etanol hidratado        | 0,64                   | 1              | 0,07           |  |  |  |  |
| 2000         | Gasolina C              | 0,29                   | 0,44           | 0,16           |  |  |  |  |
|              | Etanol hidratado        | 0,54                   | 0,81           | 0,07           |  |  |  |  |
| 2001         | Gasolina C              | 0,27                   | 0,41           | 0,16           |  |  |  |  |
|              | Etanol hidratado        | 0,52                   | 0,79           | 0,07           |  |  |  |  |
|              | Gasolina C              | 0,24                   | 0,37           | 0,16           |  |  |  |  |
| 2002         | Etanol hidratado        | nd                     | nd             | nd             |  |  |  |  |
|              | Gasolina C              | 0,29                   | 0,46           | 0,16           |  |  |  |  |
|              | Etanol hidratado        | nd                     | nd             | nd             |  |  |  |  |
| 2003         | Flex - Gasolina C       | nd                     | nd             | 0.16           |  |  |  |  |
|              | Flex - Etanol hidratado | nd                     | nd             | 0,07           |  |  |  |  |
|              | Gasolina C              | 0,27                   | 0,42           | 0,16           |  |  |  |  |
|              | Etanol hidratado        | nd                     | nd             | nd             |  |  |  |  |
| 2004         | Flex - Gasolina C       | nd                     | nd             | 0.16           |  |  |  |  |
|              | Flex - Etanol hidratado | nd                     | nd             | 0.10           |  |  |  |  |
|              | Gasolina C              | 0,35                   | 0,55           | 0,16           |  |  |  |  |
|              | Etanol hidratado        | 0,33<br>nd             | nd             | nd             |  |  |  |  |
| 2005         | Flex - Gasolina C       | nd                     | t              | 0.16           |  |  |  |  |
|              | Flex - Etanol hidratado |                        | nd             |                |  |  |  |  |
|              | Gasolina C              | nd                     | nd             | 0,07           |  |  |  |  |
| 2006         | Etanol hidratado        | 0,18                   | 0,28           | 0,16           |  |  |  |  |
| 2006         |                         | 0,24                   | 0,38           | 0,16           |  |  |  |  |
|              | Flex - Gasolina C       | 0,49                   | 0,78           | 0,07           |  |  |  |  |
| 2007         | Gasolina C              | 0,18                   | 0,28           | 0,16           |  |  |  |  |
| 2007         | Etanol hidratado        | 0,24                   | 0,38           | 0,16           |  |  |  |  |
|              | Flex - Gasolina C       | 0,49                   | 0,78           | 0,07           |  |  |  |  |
| 2000         | Gasolina C              | 0,25                   | 0,41           | 0,16           |  |  |  |  |
| 2008         | Etanol hidratado        | 0,16                   | 0,26           | 0,16           |  |  |  |  |
|              | Flex - Gasolina C       | 0,42                   | 0,68           | 0,07           |  |  |  |  |
| 2009         | Gasolina C              | 0,25                   | 0,41           | 0,16           |  |  |  |  |
| em diante    | Etanol hidratado        | 0,16                   | 0,26           | 0,16           |  |  |  |  |
|              | Flex - Gasolina C       | 0,42                   | 0,68           | 0,07           |  |  |  |  |

Fonte: MMA (2011).

Tabela 6: Normais Climatológicas do Brasil - 1961-1990 — Temperaturas Mínimas.

| Name de Estação             |         | Temperatura mínima por mês |       |       |      |       |       |        |          |         |          |          |
|-----------------------------|---------|----------------------------|-------|-------|------|-------|-------|--------|----------|---------|----------|----------|
| Nome da Estação             | Janeiro | Fevereiro                  | Março | Abril | Maio | Junho | Julho | Agosto | Setembro | Outubro | Novembro | Dezembro |
| Alto da Boa Vista           | 20,7    | 21,0                       | 20,2  | 18,4  | 16,9 | 15,6  | 14,9  | 15,6   | 16,0     | 17,2    | 18,4     | 19,7     |
| Angra dos Reis              | 22,6    | 23,1                       | 22,5  | 20,8  | 18,9 | 17,1  | 16,5  | 17,2   | 18,2     | 19,3    | 20,4     | 21,7     |
| Araras                      | 16,8    | 16,9                       | 15,9  | 13,8  | 10,3 | 9,1   | 8,2   | 9,3    | 11,7     | 14,2    | 15,0     | 16,2     |
| Bangu                       | 23,1    | 23,4                       | 22,7  | 20,9  | 18,6 | 17,2  | 16,4  | 17,4   | 18,4     | 19,8    | 21,1     | 22,2     |
| Barreirinha                 | 18,0    | 18,2                       | 17,5  | 15,3  | 12,8 | 11,9  | 11,1  | 12,4   | 13,9     | 15,3    | 16,1     | 17,3     |
| Cabo Frio (Alcalis)         | 22,3    | 22,7                       | 22,7  | 21,5  | 20,0 | 18,8  | 18,6  | 18,7   | 19,0     | 19,7    | 20,7     | 21,8     |
| Campos                      | 22,5    | 22,7                       | 22,5  | 20,7  | 18,9 | 17,5  | 16,9  | 17,5   | 18,5     | 20,0    | 21,0     | 21,9     |
| Carmo                       | 20,4    | 20,6                       | 19,9  | 17,9  | 15,4 | 13,5  | 12,8  | 13,9   | 15,6     | 17,7    | 18,9     | 20,0     |
| Cordeiro                    | 19,1    | 19,2                       | 18,6  | 16,7  | 14,5 | 12,5  | 11,9  | 12,8   | 14,5     | 16,5    | 17,9     | 18,8     |
| Ecologia Agrícola           | 22,2    | 22,6                       | 21,7  | 19,8  | 17,7 | 16,3  | 15,7  | 16,6   | 17,7     | 18,9    | 20,1     | 21,3     |
| Engenho de Dentro           | 22,6    | 23,0                       | 22,4  | 20,3  | 18,1 | 17,0  | 16,3  | 17,2   | 18,4     | 19,4    | 20,1     | 21,6     |
| Ilha Guaíba                 | 22,4    | 22,9                       | 22,5  | 21,1  | 19,6 | 18,4  | 18,0  | 18,3   | 18,3     | 19,1    | 20,4     | 21,4     |
| Itaperuna                   | 21,7    | 21,9                       | 21,4  | 19,8  | 17,5 | 15,7  | 15,0  | 15,8   | 17,4     | 19,1    | 20,2     | 21,0     |
| Jacarepaguá                 | 22,2    | 22,3                       | 21,9  | 19,8  | 17,5 | 16,5  | 15,6  | 16,5   | 17,7     | 18,7    | 19,7     | 21,2     |
| Jardim Botânico             | 21,8    | 22,2                       | 21,6  | 19,7  | 17,7 | 16,8  | 16,0  | 16,5   | 17,8     | 18,9    | 19,7     | 20,9     |
| Nova Friburgo               | 17,1    | 17,1                       | 16,8  | 14,8  | 11,9 | 10,1  | 9,5   | 10,3   | 12,3     | 14,3    | 15,5     | 16,3     |
| Penha                       | 23,2    | 23,4                       | 22,9  | 21,0  | 18,9 | 17,6  | 16,9  | 17,8   | 19,0     | 19,9    | 20,8     | 22,2     |
| Pinheiral                   | 19,8    | 20,0                       | 19,3  | 17,0  | 14,1 | 12,4  | 11,4  | 12,6   | 14,8     | 16,9    | 17,5     | 18,7     |
| Piraí                       | 19,4    | 19,3                       | 19,1  | 17,4  | 14,5 | 12,4  | 11,5  | 12,6   | 14,6     | 16,4    | 17,7     | 18,8     |
| Resende                     | 19,9    | 20,0                       | 19,7  | 18,0  | 15,0 | 12,8  | 12,0  | 13,3   | 15,4     | 17,2    | 18,3     | 19,3     |
| Rio de Janeiro              | 23,3    | 23,5                       | 23,3  | 21,9  | 20,4 | 18,7  | 18,4  | 18,9   | 19,2     | 20,2    | 21,4     | 22,4     |
| Santa Cruz                  | 22,4    | 22,9                       | 22,1  | 20,4  | 18,5 | 17,8  | 16,9  | 17,7   | 18,3     | 19,1    | 19,9     | 21,6     |
| Santa Teresa                | 21,3    | 21,5                       | 20,9  | 19,3  | 17,4 | 16,4  | 15,7  | 16,1   | 17,1     | 17,8    | 18,6     | 20,1     |
| Santo Antônio de Pádua      | 22,1    | 22,2                       | 21,5  | 19,8  | 16,9 | 15,0  | 14,3  | 15,2   | 17,6     | 19,3    | 20,5     | 21,3     |
| São Bento (Duque de Caxias) | 21,7    | 22,0                       | 21,2  | 19,3  | 16,8 | 15,4  | 14,8  | 15,7   | 17,3     | 18,8    | 19,7     | 21,0     |
| São Fidelis                 | 21,6    | 21,8                       | 21,1  | 19,7  | 17,4 | 15,6  | 15,1  | 16,2   | 17,4     | 19,1    | 20,4     | 21,2     |
| Teresópolis - P. Nacional   | 16,2    | 16,3                       | 15,6  | 13,6  | 11,4 | 10,5  | 9,7   | 10,9   | 12,2     | 13,4    | 14,2     | 15,4     |
| Tinguá                      | 19,6    | 19,8                       | 19,2  | 17,5  | 15,8 | 14,6  | 14,1  | 14,9   | 15,8     | 16,7    | 17,8     | 19,0     |
| Vassouras                   | 19,7    | 19,9                       | 19,3  | 17,5  | 14,7 | 13,1  | 12,5  | 13,7   | 15,4     | 17,1    | 18,1     | 19,2     |
| Xerém                       | 19,4    | 19,6                       | 18,9  | 17,2  | 15,2 | 14,3  | 13,5  | 14,2   | 15,6     | 16,9    | 17,6     | -        |
| Médias                      | 20,8    | 21,1                       | 20,5  | 18,7  | 16,4 | 15,0  | 14,3  | 15,2   | 16,5     | 17,9    | 18,9     | 20,1     |

Fonte: INMET (2011).



**Tabela 7:** Normais Climatológicas do Brasil - 1961-1990 – Temperaturas médias.

| Nome da Estação           |         |           |       |       | N    | lédia de | tempe | ratura p | or mês   |         |          |          | Média de          |
|---------------------------|---------|-----------|-------|-------|------|----------|-------|----------|----------|---------|----------|----------|-------------------|
| Nome da Estação           | Janeiro | Fevereiro | Março | Abril | Maio | Junho    | Julho | Agosto   | Setembro | Outubro | Novembro | Dezembro | Temperatura anual |
| Alto da Boa Vista         | 24,5    | 24,6      | -     | 21,2  | 19,5 | 19,0     | 18,5  | 19,0     | 19,3     | 20,2    | 21,3     | 22,8     | 20,9              |
| Angra dos Reis            | 25,9    | 26,4      | 25,7  | 23,8  | 22,1 | 20,7     | 20,2  | 20,8     | 21,4     | 22,3    | 23,5     | 24,9     | 23,1              |
| Araras                    | 21,7    | 21,9      | 21,1  | 18,9  | 15,9 | 14,8     | 14,0  | 15,5     | 17,7     | 19,0    | 19,8     | 21,0     | 18,4              |
| Bangu                     | 27,0    | 27,1      | 26,4  | 24,2  | 22,0 | 21,1     | 20,5  | 21,8     | 22,5     | 23,4    | 24,3     | 25,9     | 23,9              |
| Barreirinha               | 21,8    | 22,0      | 21,3  | 19,2  | 17,0 | 16,2     | 15,5  | 17,1     | 18,3     | 19,0    | 20,0     | 21,0     | 19,0              |
| Cabo Frio (Alcalis)       | 25,0    | 25,2      | 25,3  | 24,1  | 22,6 | 21,6     | 21,1  | 21,0     | 21,2     | 22,0    | 23,3     | 24,4     | 23,1              |
| Campos                    | 26,2    | 26,6      | 26,3  | 24,3  | 22,6 | 21,4     | 20,7  | 21,6     | 22,2     | 23,2    | 24,4     | 25,3     | 23,7              |
| Carmo                     | 25,2    | 25,5      | 24,9  | 22,6  | 20,3 | 19,0     | 18,4  | 19,8     | 21,3     | 22,1    | 23,2     | 24,2     | 22,2              |
| Cordeiro                  | 23,5    | 23,9      | 23,2  | 20,8  | 18,7 | 17,3     | 16,7  | 18,1     | 19,1     | 20,7    | 22,0     | 22,8     | 20,6              |
| Ecologia Agrícola         | 26,1    | 26,4      | 25,6  | 23,4  | 21,5 | 20,6     | 20,2  | 21,1     | 21,9     | 22,6    | 23,8     | 25,0     | 23,2              |
| Engenho de Dentro         | 27,0    | 27,2      | 26,4  | 24,3  | 22,2 | 21,3     | 20,8  | 22,0     | 22,9     | 23,5    | 24,1     | 25,9     | 24,0              |
| Ilha Guaíba               | 25,8    | 26,2      | 25,7  | 23,9  | 22,5 | 21,5     | 21,2  | 21,5     | 21,5     | 22,2    | 23,8     | 24,9     | 23,4              |
| Itaperuna                 | 26,0    | 26,4      | 25,8  | 23,9  | 21,8 | 20,6     | 20,0  | 21,3     | 22,2     | 23,2    | 24,1     | 24,9     | 23,3              |
| Jacarepaguá               | 26,6    | 26,7      | 26,2  | 24,0  | 21,8 | 21,0     | 20,3  | 21,5     | 22,3     | 23,1    | 24,1     | 25,6     | 23,6              |
| Nova Friburgo             | 21,2    | 21,2      | 20,8  | 18,5  | 16,0 | 14,6     | 14,1  | 15,3     | 16,6     | 18,2    | 19,3     | 20,3     | 18,0              |
| Penha                     | 27,2    | 27,5      | 26,6  | 24,7  | 22,6 | 21,4     | 21,0  | 22,1     | 23,0     | 23,6    | 24,5     | 26,0     | 24,2              |
| Pinheiral                 | 24,2    | 24,1      | 23,8  | 21,4  | 18,6 | 17,4     | 16,9  | 18,5     | 20,4     | 21,2    | 22,2     | 23,1     | 21,0              |
| Piraí                     | 23,9    | 24,0      | 23,6  | 21,5  | 18,9 | 17,5     | 16,9  | 18,2     | 19,7     | 20,9    | 22,1     | 23,2     | 20,9              |
| Resende                   | 23,8    | 24,2      | 23,6  | 21,5  | 19,2 | 17,7     | 17,4  | 18,9     | 20,4     | 21,4    | 22,4     | 23,1     | 21,1              |
| Rio de Janeiro            | 26,3    | 26,6      | 26,0  | 24,4  | 22,8 | 21,8     | 21,3  | 21,8     | 22,2     | 22,9    | 24,0     | 25,3     | 23,8              |
| Santa Maria Madalena      | 22,8    | 23,0      | 22,5  | 20,7  | 18,7 | 17,7     | 16,9  | 18,0     | 18,8     | 19,9    | 20,8     | 22,0     | 20,1              |
| Santa Teresa              | 25,5    | 25,5      | 24,9  | 23,0  | 21,2 | 20,3     | 19,6  | 20,4     | 21,4     | 21,7    | 22,8     | 24,2     | 22,5              |
| Santo Antônio de Pádua    | 26,8    | 26,9      | 26,3  | 24,1  | 21,5 | 19,9     | 19,6  | 21,1     | 23,0     | 23,8    | 25,2     | 25,8     | 23,7              |
| ão Bento (Duque de Caxias | 26,2    | 26,4      | 25,7  | 23,4  | 21,2 | 20,0     | 19,5  | 20,7     | 21,8     | 22,9    | 23,9     | 25,3     | 23,1              |
| Teresópolis - P. Nacional | 20,7    | 20,8      | 20,2  | 17,9  | 15,8 | 14,9     | 14,3  | 15,6     | 16,7     | 17,5    | 18,3     | 19,7     | 17,7              |
| Tinguá                    | 25,0    | 25,4      | 24,5  | 22,4  | 20,5 | 19,4     | 19,0  | 20,2     | 21,0     | 21,9    | 23,1     | 24,3     | 22,2              |
| Vassouras                 | 23,6    | 24,0      | 23,2  | 21,3  | 19,0 | 17,6     | 17,2  | 18,6     | 19,7     | 20,9    | 21,9     | 22,9     | 20,8              |
| Média                     | 24,8    | 25,0      | 24,4  | 22,3  | 20,2 | 19,1     | 18,6  | 19,7     | 20,7     | 21,6    | 22,7     | 23,8     | 21,9              |

Fonte: INMET (2011).



O método de cálculo das emissões evaporativas utilizado neste estudo seguiu o utilizado pelo INEAVAR (MMA, 2011), onde se calcula o número de viagens anuais dividindose a quilometragem anual percorrida por uma estimativa de quilometragem média por viagem, a qual neste estudo foi considerada 14,166 definida com base no tempo e velocidades médios de viagem conforme dados obtidos em CENTRAL (2003).

## 5.2. Fatores de emissão para automóveis e comerciais leves convertidos a GNV

Para os automóveis e comerciais leves convertidos a GNV, foram calculadas as emissões para os poluentes CO, NO<sub>x</sub>, RCHO, CH4 e NHMC<sub>escapamento</sub>. Os fatores de emissão utilizados encontram-se descritos na Tabela 8. Devido a falta de informações disponíveis, não foram considerados fatores de incremento de emissões para os veículos convertidos a GNV.

**Tabela 8:** Fatores de emissão para veículos a gás natural veicular, em g/km.

| CO     | NOx    | RCHO   | NMHC   | CH4    |  |
|--------|--------|--------|--------|--------|--|
| (g/km) | (g/km) | (g/km) | (g/km) | (g/km) |  |
| 0,56   | 0,29   | 0,0038 | 0,026  | 0,22   |  |

Fonte: MMA (2011).

## **5.3.** Fatores de emissão para motocicletas

Para as motocicletas foram considerados os mesmos fatores de emissão adotados pelo INEAVAR (MMA, 2011), conforme Tabela 9. Em virtude da ausência de informações disponíveis, não foram considerados fatores de incremento de emissões por acúmulo de rodagem para as motocicletas.

**Tabela 9:** Fatores de emissão para motocicletas, em g/km.

| Ano-modelo     | со    | Nox  | NMHC | CH₄  | MP     |
|----------------|-------|------|------|------|--------|
| Até 2002       | 19,70 | 0,10 | 2,21 | 0,39 | 0,0287 |
| 2003           | 6,36  | 0,18 | 0,71 | 0,13 | 0,0140 |
| 2004           | 6,05  | 0,18 | 0,66 | 0,12 | 0,0140 |
| 2005           | 3,12  | 0,16 | 0,49 | 0,09 | 0,0035 |
| 2006           | 2,21  | 0,17 | 0,27 | 0,05 | 0,0035 |
| 2007           | 1,83  | 0,16 | 0,30 | 0,05 | 0,0035 |
| 2008           | 1,12  | 0,09 | 0,18 | 0,03 | 0,0035 |
| 2009           | 1,02  | 0,10 | 0,14 | 0,03 | 0,0035 |
| 2010 em diante | 0,73  | 0,07 | 0,14 | 0,03 | 0,0035 |

Fonte: MMA (2011).

## 5.4. Fatores de emissão para veículos do ciclo Diesel

Para os veículos movidos a diesel, foram considerados fatores de emissão para os poluentes CO, NO<sub>x</sub>, NMHC e MP, regulamentados pelo PROCONVE. Tais valores são disponibilizados em g<sub>poluente</sub>/kWh, conforme Tabela 10.



**Tabela 10:** Fatores de emissão para motores Diesel por fase do PROCONVE, em g/kWh.

| g/kWh - poluente      |      |      |      |       |  |  |  |  |  |
|-----------------------|------|------|------|-------|--|--|--|--|--|
| Fase do PROCONVE      | СО   | NMHC | Nox  | MP    |  |  |  |  |  |
| Pré-PROCONVE, P1 e P2 | 1,86 | 0,68 | 10,7 | 0,66  |  |  |  |  |  |
| Р3                    | 1,62 | 0,54 | 6,55 | 0,318 |  |  |  |  |  |
| P4                    | 0,85 | 0,29 | 6,16 | 0,12  |  |  |  |  |  |
| P5                    | 0,83 | 0,16 | 4,67 | 0,078 |  |  |  |  |  |
| P7                    | 0,83 | 0,16 | 1,8  | 0,018 |  |  |  |  |  |

Fonte: MMA (2011).

Desse modo, seguindo o método de conversão adotado pelo INEAVAR (MMA, 2011) tais fatores foram convertidos em g<sub>poluente</sub>/km, conforme Equações 5 e 6.

$$\frac{g_{poluente}}{g_{diesel}} = \frac{g_{poluente}}{kWh} \div \frac{g_{diesel}}{KWh}$$
 Equação 5

$$\frac{g_{poluente}}{km} = \frac{g_{poluente}}{g_{diesel}} \times \frac{g_{diesel}}{L_{diesel}} \div \frac{km}{L_{diesel}}$$
 Equação 6

Como consumo específico de combustível considerou-se os valores disponibilizados pelo INEAVAR, conforme Tabela 11.

**Tabela 11**: Consumo específico de combustível de motores Diesel por fase do PROCONVE, em  $g_{diesel}/kWh$ 

| Fase do PROCONVE      | Consumo específico de combustível (gdiesel/kWh) |
|-----------------------|-------------------------------------------------|
| Pré-PROCONVE, P1 e P2 | 225                                             |
| P3                    | 218                                             |
| P4                    | 210                                             |
| P5                    | 220                                             |
| P7                    | 210                                             |

Fonte: MMA (2011).

**Tabela 12:** Fatores de emissão para motores Diesel por fase do PROCONVE, em  $g_{poluente}/kg_{diesel}$ 

| Fase do PROCONVE      | СО   | NMHC | Nox   | MP    |
|-----------------------|------|------|-------|-------|
| Pré-PROCONVE, P1 e P2 | 8,27 | 3,02 | 47,56 | 2,933 |
| P3                    | 7,43 | 2,48 | 30,05 | 1,459 |
| P4                    | 4,05 | 1,38 | 29,33 | 0,571 |
| P5                    | 3,77 | 0,73 | 21,23 | 0,355 |
| P7                    | 3,95 | 0,76 | 8,57  | 0,086 |

Fonte: MMA (2011).



Para a conversão dos fatores de emissão de poluentes de g<sub>poluente</sub>/kg<sub>diesel</sub> em g<sub>poluente</sub>/km, utilizados para o cálculo das emissões (Tabela 12), utilizou-se o valor de massa específica do diesel disponível em ANP (2009) de 0,85200 kg/l e os rendimentos (km/l) característicos de cada categoria de veículo que encontram-se descritos no ANEXO XIII. Os fatores de emissão calculados e utilizados para os veículos do ciclo Diesel encontram na Tabela 13.

**Tabela 13:** Fatores de emissão para veículos movidos a diesel, em g<sub>poluente</sub>/km.

| Pré-PROCONVE, P1 e P2         0,77         0,28         4,46         0,27           P3         0,70         0,23         2,82         0,14           Comerciais leves         P4         0,38         0,13         2,75         0,05           P5         0,35         0,07         1,99         0,03           P7         0,37         0,07         0,80         0,01           P3         1,62         0,54         6,56         0,32           Caminhões leves         P4         0,88         0,30         6,41         0,12           P5         0,82         0,16         4,64         0,08           P6         P7         0,86         0,17         1,87         0,02           P5         0,82         0,16         4,64         0,08           P6         PROCONVE, P1 e P2         2,32         0,85         13,33         0,82           Caminhões médios         P4         1,13         0,39         8,42         0,41           P7         1,16         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,20           P6         1,23         0,45         9,58<                                                                            | Categoria de veículo                | Fase do PROCONVE      | СО                                                                                                                                                                                                                                                                                               | NMHC   | Nox   | MP   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------|
| Comerciais leves         P4         0,38         0,13         2,75         0,05           P5         0,35         0,07         1,99         0,03           P7         0,37         0,07         0,80         0,01           P8         1,62         0,54         6,56         0,32           Caminhões leves         P4         0,88         0,30         6,41         0,12           P5         0,82         0,16         4,64         0,08           P7         0,86         0,17         1,87         0,02           P7         0,86         0,17         1,87         0,02           P8         1,133         0,39         8,22         0,16           P7         0,86         0,17         1,87         0,02           P7         0,86         0,17         1,87         0,02           P8         1,133         0,39         8,22         0,16           P9         1,133         0,39         8,22         0,16           P8         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P9         1,06         0,20 </td <td></td> <td>Pré-PROCONVE, P1 e P2</td> <td>0,7</td> <td>7 0,28</td> <td>4,46</td> <td>0,27</td> |                                     | Pré-PROCONVE, P1 e P2 | 0,7                                                                                                                                                                                                                                                                                              | 7 0,28 | 4,46  | 0,27 |
| P5         0,35         0,07         1,99         0,03           P7         0,37         0,07         0,80         0,01           P8         0,37         0,07         0,80         0,01           P93         1,62         0,54         6,56         0,32           P4         0,88         0,30         6,41         0,12           P5         0,82         0,16         4,64         0,08           P7         0,86         0,17         1,87         0,02           P6         0,86         0,17         1,87         0,02           P7         0,86         0,17         1,87         0,02           P8         1,08         0,69         3,43         0,81           P8         1,13         0,39         8,22         0,16           P4         1,13         0,39         8,22         0,16           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P7         1,11         0,21         2,40         0,02           P9         1,23         0,45         9,58         0,19                                                                                                                                 |                                     | P3                    | 0,70                                                                                                                                                                                                                                                                                             | 0,23   | 2,82  | 0,14 |
| P7         0,37         0,07         0,80         0,01           Pré-PROCONVE, P1 e P2         1,81         0,66         10,39         0,64           P3         1,62         0,54         6,56         0,32           P4         0,88         0,30         6,41         0,12           P5         0,82         0,16         4,64         0,08           P7         0,86         0,17         1,87         0,02           P3         2,08         0,69         8,42         0,41           P3         2,08         0,69         8,42         0,41           P4         1,13         0,39         8,22         0,16           P4         1,13         0,39         8,22         0,16           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P6         P8         2,43         0,81         9,81         0,48           Caminhões pesados         P4         1,32         0,45         9,58         0,10           P7         1,11         0,21         2,40         0,02         0,51         0,03         0,12 <td>Comerciais leves</td> <td>P4</td> <td>0,38</td> <td>3 0,13</td> <td>2,75</td> <td>0,05</td>   | Comerciais leves                    | P4                    | 0,38                                                                                                                                                                                                                                                                                             | 3 0,13 | 2,75  | 0,05 |
| Caminhões leves         Pré-PROCONVE, P1 e P2         1,81         0,66         10,39         0,64           P3         1,62         0,54         6,56         0,32           P4         0,88         0,30         6,41         0,12           P5         0,82         0,16         4,64         0,08           P7         0,86         0,17         1,87         0,02           P3         2,08         0,69         8,42         0,41           Caminhões médios         P4         1,13         0,39         8,22         0,16           P4         1,13         0,39         8,22         0,41           P3         2,08         0,69         8,42         0,41           P5         1,06         0,20         5,95         0,10           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P6         PROCONVE, P1 e P2         2,70         0,99         15,52         0,96           P3         2,43         0,81         9,81         0,48           P7         1,23         0,24         6,93         0,12                                                                                                   |                                     | P5                    | 0,3!                                                                                                                                                                                                                                                                                             | 5 0,07 | 1,99  | 0,03 |
| Caminhões leves         P3         1,62         0,54         6,56         0,32           P4         0,88         0,30         6,41         0,12           P5         0,82         0,16         4,64         0,08           P7         0,86         0,17         1,87         0,02           P4         1,13         0,39         8,42         0,41           P3         2,08         0,69         8,42         0,41           P5         1,06         0,20         5,95         0,10           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P7         1,11         0,21         2,40         0,02           P7         1,11         0,21         2,40         0,02           P3         2,43         0,81         9,81         0,48           Caminhões pesados         P4         1,32         0,45         9,58         0,19           P3         2,43         0,81         9,81         0,48           Caminhões pesados         P4         1,32         0,45         9,58         0,19           P5                                                                                                          |                                     | P7                    | 0,3                                                                                                                                                                                                                                                                                              | 7 0,07 | 0,80  | 0,01 |
| Caminhões leves         P4         0,88         0,30         6,41         0,12           P5         0,82         0,16         4,64         0,08           P7         0,86         0,17         1,87         0,02           P4         0,86         0,17         1,87         0,02           P3         2,08         0,69         8,42         0,41           Caminhões médios         P4         1,13         0,39         8,22         0,16           P5         1,06         0,20         5,95         0,10           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P9         2,70         0,99         15,52         0,96           P4         1,32         0,45         9,58         0,19           P5         1,23         0,45         9,58         0,19           P5         1,23         0,45         9,58         0,19           P6         1,23         0,45         9,58         0,13           P6         1,23         0,45         0,93         0,12           P6         1,50         0,51 <td></td> <td>Pré-PROCONVE, P1 e P2</td> <td>1,83</td> <td>1 0,66</td> <td>10,39</td> <td>0,64</td>      |                                     | Pré-PROCONVE, P1 e P2 | 1,83                                                                                                                                                                                                                                                                                             | 1 0,66 | 10,39 | 0,64 |
| P5         0,82         0,16         4,64         0,08           P7         0,86         0,17         1,87         0,02           Pré-PROCONVE, P1 e P2         2,32         0,85         13,33         0,82           P3         2,08         0,69         8,42         0,41           P4         1,13         0,39         8,22         0,16           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P6         PROCONVE, P1 e P2         2,70         0,99         15,52         0,96           P3         2,43         0,81         9,81         0,48           P4         1,32         0,45         9,58         0,19           P5         1,23         0,45         9,58         0,19           P7         1,29         0,25         2,80         0,03           P6         1,23         0,45         9,58         0,19           P6         1,23         0,45         9,58         0,19           P6         1,23         0,45         0,93         0,12           P6         1,10         0,05 <t< td=""><td></td><td>P3</td><td>1,62</td><td>2 0,54</td><td>6,56</td><td>0,32</td></t<>                   |                                     | P3                    | 1,62                                                                                                                                                                                                                                                                                             | 2 0,54 | 6,56  | 0,32 |
| P7         0,86         0,17         1,87         0,02           Pré-PROCONVE, P1 e P2         2,32         0,85         13,33         0,82           P3         2,08         0,69         8,42         0,41           P4         1,13         0,39         8,22         0,16           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P8         2,70         0,99         15,52         0,96           P3         2,43         0,81         9,81         0,48           P9         1,32         0,45         9,58         0,19           P5         1,23         0,45         9,58         0,19           P5         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           P1         1,29         0,25         2,80         0,03           P1         1,29         0,25         2,80         0,03           P1         1,14         0,29         11,13         0,54           P1         1,14         0,29         7,86         0,13                                                                                                            | Caminhões leves                     | P4                    | 0,88                                                                                                                                                                                                                                                                                             | 3 0,30 | 6,41  | 0,12 |
| Pré-PROCONVE, P1 e P2         2,32         0,85         13,33         0,82           P3         2,08         0,69         8,42         0,41           P4         1,13         0,39         8,22         0,16           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P6-PROCONVE, P1 e P2         2,70         0,99         15,52         0,96           P3         2,43         0,81         9,81         0,48           P4         1,32         0,45         9,58         0,19           P5         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           Pré-PROCONVE, P1 e P2         3,06         1,12         17,62         1,09           P3         2,75         0,92         11,13         0,54           P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P6         1,46         0,28         3,18         0,03           P6         2,09         0,70                                                                                               |                                     | P5                    | 0,82                                                                                                                                                                                                                                                                                             | 2 0,16 | 4,64  | 0,08 |
| Caminhões médios         P3         2,08         0,69         8,42         0,41           P4         1,13         0,39         8,22         0,16           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           Pré-PROCONVE, P1 e P2         2,70         0,99         15,52         0,96           P3         2,43         0,81         9,81         0,48           P4         1,32         0,45         9,58         0,19           P5         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           P8         2,75         0,92         11,13         0,54           Onibus urbanos         P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P5         1,40         0,27         7,86         0,13           P6         1,46         0,28         3,18         0,03           P7         1,46         0,28         3,18         0,03           P6         2,09                                                                                                   |                                     | P7                    | 0,86                                                                                                                                                                                                                                                                                             | 5 0,17 | 1,87  | 0,02 |
| Caminhões médios         P4         1,13         0,39         8,22         0,16           P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           P8         2,70         0,99         15,52         0,96           P3         2,43         0,81         9,81         0,48           P4         1,32         0,45         9,58         0,19           P5         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           P1         1,29         0,25         2,80         0,03           P3         2,75         0,92         11,13         0,54           P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           P6         1,14         0,39         8,25         0,41           P6         1,46         0,28         3,18         0,03           P1         2,09         0,70         8,45                                                                                                                   |                                     | Pré-PROCONVE, P1 e P2 | 2,32                                                                                                                                                                                                                                                                                             | 2 0,85 | 13,33 | 0,82 |
| P5         1,06         0,20         5,95         0,10           P7         1,11         0,21         2,40         0,02           Pré-PROCONVE, P1 e P2         2,70         0,99         15,52         0,96           P3         2,43         0,81         9,81         0,48           P5         1,32         0,45         9,58         0,19           P5         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           P9         2,75         0,92         11,13         0,54           P3         2,75         0,92         11,13         0,54           P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           P6-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P6-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P6-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P6-PROCONVE, P1 e P2                                                                                    |                                     | P3                    | 2,08                                                                                                                                                                                                                                                                                             | 3 0,69 | 8,42  | 0,41 |
| P7         1,11         0,21         2,40         0,02           Caminhões pesados         Pré-PROCONVE, P1 e P2         2,70         0,99         15,52         0,96           P3         2,43         0,81         9,81         0,48           P5         1,32         0,45         9,58         0,19           P7         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           P3         2,75         0,92         11,13         0,54           P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           Pré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           Ônibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                      | Caminhões médios                    | P4                    | 1,13                                                                                                                                                                                                                                                                                             | 3 0,39 | 8,22  | 0,16 |
| Pré-PROCONVE, P1 e P2         2,70         0,99         15,52         0,96           P3         2,43         0,81         9,81         0,48           P4         1,32         0,45         9,58         0,19           P5         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           P4         1,50         0,51         17,62         1,09           P3         2,75         0,92         11,13         0,54           P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           Pré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           Înibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                               |                                     | P5                    | 1,00                                                                                                                                                                                                                                                                                             | 5 0,20 | 5,95  | 0,10 |
| Caminhões pesados         P4         1,32         0,45         9,58         0,19           P5         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           Pré-PROCONVE, P1 e P2         3,06         1,12         17,62         1,09           P3         2,75         0,92         11,13         0,54           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           P6-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Ônibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                          |                                     | P7                    | VE, P1 e P2     2,32     0,85     13,33       2,08     0,69     8,42       1,13     0,39     8,22       1,06     0,20     5,95       1,11     0,21     2,40       VE, P1 e P2     2,70     0,99     15,52       2,43     0,81     9,81       1,32     0,45     9,58       1,23     0,24     6,93 | 0,02   |       |      |
| Caminhões pesados         P4         1,32         0,45         9,58         0,19           P5         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           Pré-PROCONVE, P1 e P2         3,06         1,12         17,62         1,09           P3         2,75         0,92         11,13         0,54           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           Pré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Ônibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                         |                                     | Pré-PROCONVE, P1 e P2 | 2,70                                                                                                                                                                                                                                                                                             | 0,99   | 15,52 | 0,96 |
| P5         1,23         0,24         6,93         0,12           P7         1,29         0,25         2,80         0,03           Pré-PROCONVE, P1 e P2         3,06         1,12         17,62         1,09           P3         2,75         0,92         11,13         0,54           P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           Peré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Ônibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | P3                    | 2,43                                                                                                                                                                                                                                                                                             | 3 0,81 | 9,81  | 0,48 |
| P7         1,29         0,25         2,80         0,03           Pré-PROCONVE, P1 e P2         3,06         1,12         17,62         1,09           P3         2,75         0,92         11,13         0,54           P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           P4         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Onibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Caminhões pesados                   | P4                    | 1,32                                                                                                                                                                                                                                                                                             | 2 0,45 | 9,58  | 0,19 |
| Pré-PROCONVE, P1 e P2         3,06         1,12         17,62         1,09           P3         2,75         0,92         11,13         0,54           P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           Peré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Ônibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | P5                    | 1,23                                                                                                                                                                                                                                                                                             | 3 0,24 | 6,93  | 0,12 |
| P3         2,75         0,92         11,13         0,54           P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           Pré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Onibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | P7                    | 1,29                                                                                                                                                                                                                                                                                             | 0,25   | 2,80  | 0,03 |
| Description         P4         1,50         0,51         10,87         0,21           P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           Pré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Description         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | Pré-PROCONVE, P1 e P2 | 3,06                                                                                                                                                                                                                                                                                             | 5 1,12 | 17,62 | 1,09 |
| P5         1,40         0,27         7,86         0,13           P7         1,46         0,28         3,18         0,03           Pré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Ônibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | P3                    | 2,75                                                                                                                                                                                                                                                                                             | 5 0,92 | 11,13 | 0,54 |
| P7         1,46         0,28         3,18         0,03           Pré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Onibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ônibus urbanos                      | P4                    | 1,50                                                                                                                                                                                                                                                                                             | 0,51   | 10,87 | 0,21 |
| Pré-PROCONVE, P1 e P2         2,32         0,85         13,37         0,82           P3         2,09         0,70         8,45         0,41           Ônibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | P5                    | 1,40                                                                                                                                                                                                                                                                                             | 0,27   | 7,86  | 0,13 |
| P3         2,09         0,70         8,45         0,41           Ônibus rodoviários         P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | P7                    | 1,46                                                                                                                                                                                                                                                                                             | 5 0,28 | 3,18  | 0,03 |
| P4         1,14         0,39         8,25         0,16           P5         1,06         0,20         5,97         0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Pré-PROCONVE, P1 e P2 | 2,32                                                                                                                                                                                                                                                                                             | 2 0,85 | 13,37 | 0,82 |
| P5 1,06 0,20 5,97 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | P3                    | 2,09                                                                                                                                                                                                                                                                                             | 0,70   | 8,45  | 0,41 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ônibus rodoviários                  | P4                    | 1,14                                                                                                                                                                                                                                                                                             | 1 0,39 | 8,25  | 0,16 |
| P7 1,11 0,21 2,41 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | P5                    | 1,00                                                                                                                                                                                                                                                                                             | 5 0,20 | 5,97  | 0,10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Caminhões pesados<br>Ônibus urbanos | P7                    | 1,1:                                                                                                                                                                                                                                                                                             | 1 0,21 | 2,41  | 0,02 |

## 5.5. Fatores de emissão de CO<sub>2</sub> para veículos do ciclo Otto e ciclo Diesel

De forma similar ao realizado pelo INEAVAR, para a definição dos fatores de emissão de CO<sub>2</sub>, utilizou-se a metodologia adotada pelo MCT (2006), conforme Equação 7.

$$FECO_2\left[\frac{kg}{l}\right] = \left(CE_c\left[\frac{MJ}{l}\right] \times F_{con}\left[\frac{gC}{MJ}\right] \times F_{ox} \times F_{CO_2}\left[\frac{gCO_2}{gC}\right]\right) \div 1000$$
 Equação 7.

Onde:

FECO<sub>2</sub>: Fator de emissão de CO2 em kg por litro de combustível;

CE<sub>c</sub>: Conteúdo energético do combustível (c) em MJ;



F<sub>con</sub>: Fator de conversão para cálculo de conteúdo de carbono (transforma energia em MJ em grama de carbono);

F<sub>ox</sub>: Fator de oxidação;

F<sub>CO2</sub>: Fator de conversão de carbono (C) para CO2;

Desse modo, obtiveram-se os fatores de emissão de CO<sub>2</sub> apresentados na Tabela 14 para os combustíveis gasolina A, etanol anidro, etanol hidratado, diesel e GNV. Para o biodiesel utilizou-se dados fornecidos por EPE (2007).

**Tabela 14:** Fatores de emissão de CO<sub>2</sub> para veículos do ciclo Otto e Diesel.

| Combustível       | Poder calorífico<br>inferiror<br>(kcal/kg) | Massa<br>especícfica<br>(kg/l) | Conteúdo<br>energético<br>(Ce <sub>c</sub> )<br>(kcal/l) | Conteúdo<br>energético<br>(MJ/I) | Fator de emissão<br>de carbono<br>(F <sub>con</sub> )<br>(tC/TJ) | Fator de<br>oxidação<br>(F <sub>ox</sub> ) | Fator de<br>conversão<br>em CO <sub>2</sub><br>(FCO <sub>2</sub> ) | Fator de<br>emissão<br>de CO <sub>2</sub><br>(FECO <sub>2</sub> ) |
|-------------------|--------------------------------------------|--------------------------------|----------------------------------------------------------|----------------------------------|------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|
| Gasolina A        | 10.550                                     | 0,742                          | 7.828,10                                                 | 32,75                            | 18,90                                                            | 0,990                                      |                                                                    | 2,25                                                              |
| Etanol Anidro     | 6.750                                      | 0,791                          | 5.339,25                                                 | 22,34                            | 14,81                                                            | 0,990                                      |                                                                    | 1,20                                                              |
| Etanol Hidratado  | 6.300                                      | 0,809                          | 5.096,70                                                 | 21,33                            | 14,81                                                            | 0,990                                      | 3,67                                                               | 1,15                                                              |
| Gás Natural Seco* | 11.900                                     | 0,740                          | 8.806,00                                                 | 36,85                            | 15,30                                                            | 0,995                                      |                                                                    | 2,06                                                              |
| Óleo Diesel       | 10.350                                     | 0,852                          | 8.818,20                                                 | 36,90                            | 20,20                                                            | 0,990                                      |                                                                    | 2,71                                                              |
| Biodiesel         |                                            |                                |                                                          | -                                |                                                                  |                                            |                                                                    | 2,43                                                              |

<sup>\*</sup> Para o gás natural considerar m³ no lugar de litro (I).

Fonte: Elaboração própria com base em ANP (2009), MCT (2006), D'Agosto (2004) e EPE (2007).

#### 6. RESULTADOS

Após obter dados de frota circulante estimada, intensidade de uso ajustada e fator de emissão, para as oito categorias de veículos consideradas neste estudo (Tabela 1), foi possível calcular as emissões de poluentes para o período de 1980 a 2010 e estimá-las, por meio de projeção, para o período de 2011 a 2030. Os resultados obtidos serão apresentados por tipo de poluente, categoria de veículo, ano e tipo de combustível.

## 6.1. Premissas adotadas para projeção da emissão

O cenário apresentado neste estudo foi elaborado tendo como base a situação atual e considerando que todas as condições atuais mantenham-se inalteradas, de modo que não se pretende acertar, mas sim, propiciar subsídios para estudos futuros e políticas públicas com o intuito de melhorar a qualidade do ar.

#### 6.1.1. Frota de veículos

Para as previsões dos anos a partir de 2011 e até 2030 buscou-se utilizar sempre que possível, os mesmos parâmetros adotados pelo INEAVAR. Sendo assim, a Tabela 15 apresenta as premissas consideradas para a projeção da evolução da frota de 2011 a 2030.



**Tabela 15:** Premissas consideradas para a projeção de frota.

| Categorias de<br>veículos | Parâmetros para<br>projeção | Vendas                    |                           | Participação de veículos  |           |                    |                     |                      |                   |                       |
|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|-----------|--------------------|---------------------|----------------------|-------------------|-----------------------|
|                           |                             | Período de<br>2010 a 2015 | Período de<br>2016 a 2030 | Dedicados a<br>gasolina C | Flex fuel | Caminhões<br>leves | Caminhões<br>médios | Caminhões<br>pesados | Ônibus<br>Urbanos | Ônibus<br>Rodoviários |
| Ciclo Otto                | Automóveis                  | 4,8%                      | 3,8%                      | 7%                        | 93%       | -                  | -                   | -                    | -                 | -                     |
|                           | Comerciais leves            |                           |                           | 44%                       | 56%       |                    |                     |                      |                   |                       |
|                           | Motocicleta                 |                           |                           | 80%                       | 20%       |                    |                     |                      |                   |                       |
| Ciclo Diesel              | Comerciais leves            | 1,7%                      |                           |                           |           | -                  | -                   | -                    | -                 | -                     |
|                           | Caminhões                   |                           |                           | -                         |           | 30%                | 10%                 | 60%                  | -                 | =                     |
|                           | Ônibus                      |                           |                           |                           |           | -                  | -                   | -                    | 90%               | 10%                   |

Fonte: Elaboração própria com base em MMA (2011).

Para veículos do ciclo Otto considerou-se os mesmos percentuais de crescimentos adotados pelo INEAVAR. No que tange aos veículos do ciclo Diesel, manteve-se o percentual de crescimento adotado pelo INEAVAR para os ônibus. Para os caminhões e comerciais leves, após verificação dos dados de frota estimada pelo PIB, conforme ANEXO VIII, optou-se por adotar para estas categorias o mesmo percentual de crescimento dos ônibus.

No que tange a participação de automóveis, comerciais leves e motocicletas por combustível (dedicados a gasolina e *flex fuel*) considerou-se as mesmas proporções observadas para o Estado do Rio de Janeiro para o ano de 2010. O mesmo critério foi utilizado para a divisão de caminhões em leves, médios e pesados e ônibus em urbanos e rodoviários.

#### 6.1.2. Intensidade de uso

Para a intensidade de uso de referência adotada para o período de 2011 a 2030, foram considerados os mesmos valores adotados para o período de 1957 a 2010. Foram mantidos, também, os valores de rendimento dos veículos (km/l) adotados para o ano de 2010.

Os consumos de gasolina C, etanol hidratado, diesel e GNV foram estimados para o período de 2011 a 2030. No caso do consumo de gasolina C e etanol hidratado utilizouse um modelo *logit* binomial para estimar a projeção de combustível com base na demanda por energia (Kcal). O consumo de diesel foi estimado em função do PIB e o consumo de GNV foi calculado em função da frota de automóveis e comerciais leves convertidos para GNV, conforme ANEXO IX.

Seguindo o procedimento adotado pelo INEAVAR, a intensidade de uso de referência foi ajustada com base no consumo estimado, sendo em seguida utilizada para o cálculo das emissões.

#### 6.1.3. Fatores de emissão

No que tange aos fatores de emissão, considerou-se a entrada das fases do PROCONVE já regulamentadas. Deste modo, para os veículos do ciclo Diesel, considerou-se a



entrada da fase P7 a partir de 2012 e para os veículos do ciclo Otto (automóveis e comerciais leves) considerou-se a entrada da fase L6 em 2014.

Os fatores de emissão para os veículos do ciclo Diesel, fase P7, foram calculados e encontram-se detalhados na Tabela 13. No caso dos automóveis e comerciais leves do ciclo Otto foram considerados os mesmos fatores de emissão adotados para o ano de 2010, visto que estes são menores do que os limites estabelecidos pela fase L6 do PROCONVE. Para as motocicletas considerou-se os mesmos fatores de emissão adotados em 2010.

#### 6.2. Emissões de monóxido de carbono (CO)

A Figura 31 apresenta as emissões de CO estimadas para o período de 1980 a 2030. Pode-se verificar que as emissões apresentam queda a partir de 1992, quando entrou em vigor a fase L2 do PROCONVE, a qual reduziu em 50% o limite de emissão de CO regulamentado.

Em relação a contribuição de cada categoria, verifica-se que o Estado do Rio de Janeiro segue a mesma tendência observada no Brasil, destacando-se os veículos do ciclo Otto (cerca de 92%), sendo os automóveis os que apresentam maior participação no total de emissões (55% em 2010). Observa-se que essa tendência (predominância dos veículos do ciclo Otto), apesar de atenuada com o passar dos anos, se mantém a mesma até 2030, quando se estima estes sejam responsáveis por 71% das emissões totais de CO.

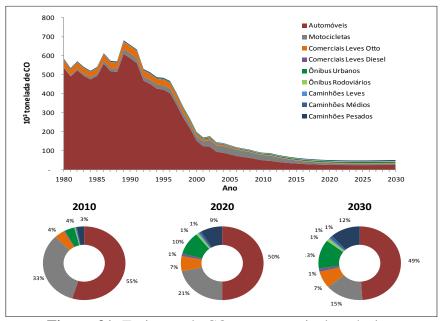



Figura 31: Emissões de CO por categoria de veículos.

Se analisada a participação dos combustíveis, verifica-se uma redução da contribuição da gasolina C de 74% em 2010 para 41% em 2030 e um aumento da contribuição do



etanol hidratado e do diesel passando de 11% e 8% em 2010 para 23% e 29% em 2030 (Figura 32).

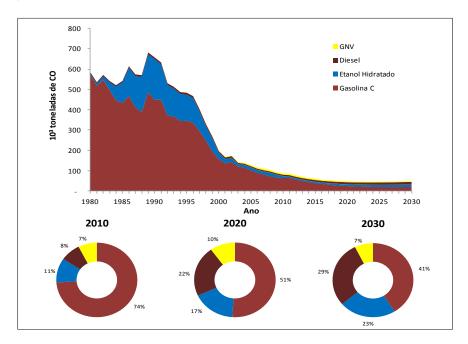



Figura 32: Emissões de CO por tipo de combustível.

## 6.3. Emissões de óxido de nitrogênio (NO<sub>x</sub>)

O resultado das estimativas de emissões de NO<sub>x</sub> demonstram que predominam as emissões oriundas dos veículos do ciclo Diesel, sendo os ônibus urbanos e os caminhões pesados os de maior participação (em 2010, 40% e 29%, respectivamente).

É possível observar, na Figura 33, um crescimento acentuado nas emissões no final da década de 80 que se estendeu até o final da década de 90, quando teve inicio a fase P4 do PROCONVE. Estima-se, que outra redução significativa ocorra em 2012, com a entrada da fase P7 do PROCONVE, quando o volume total de emissões seja reduzido em 34% de 2011 (52 mil toneladas de NOx) para 2030 (34 mil toneladas).



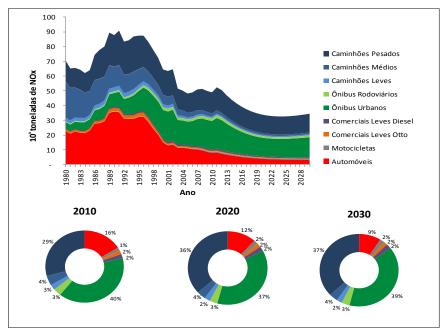
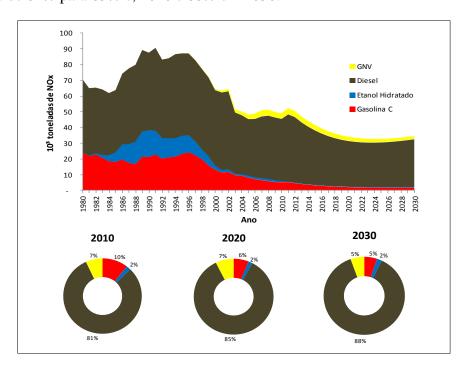




Figura 33: Emissões de NOx por categoria de veículo.

Quando analisada a participação dos combustíveis (Figura 34) no total das emissões estimadas de  $NO_x$ , o diesel se destaca, sendo responsável por 81% das emissões deste poluente em 2010. Para os próximos anos estima-se que a participação do diesel aumente de 81% para 85% e, 2020 e 88% em 2030.



**Figura 34:** Emissões de NO<sub>x</sub> por tipo de combustível.



## 6.4. Emissões de material particulado (MP)

No que tange as emissões estimadas de MP, destacam-se os veículos pesados. Em 2010, o ônibus urbano contribuiu com 41% e o caminhão pesado a 35% das emissões de MP. Em 2020, estima-se que o caminhão pesado tenha uma maior participação nas emissões de MP do que os ônibus urbanos (38%). Já em 2030, o caminhão pesado e o ônibus urbano quase se igualam em termos de contribuição para as emissões deste poluente (Figura 35).

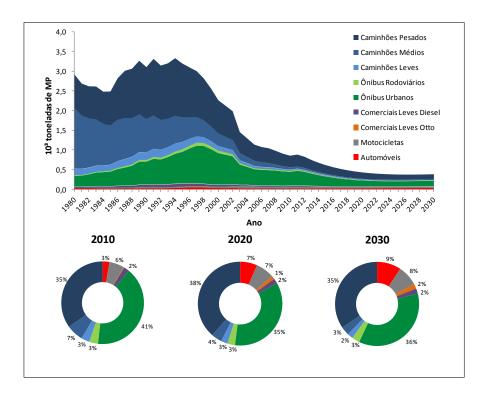



Figura 35: Emissões de MP por categoria de veículo.

Analisando a contribuição dos combustíveis em relação às emissões de MP, verifica-se que, em 2010, 91% do MP emitido pelo setor de transporte rodoviário é proveniente do diesel. Apesar da gasolina C apresentar um crescimento (de 9% em 2010 para 19% em 2030), o diesel continuará sendo o maior responsável pelas emissões de MP (Figura 36).



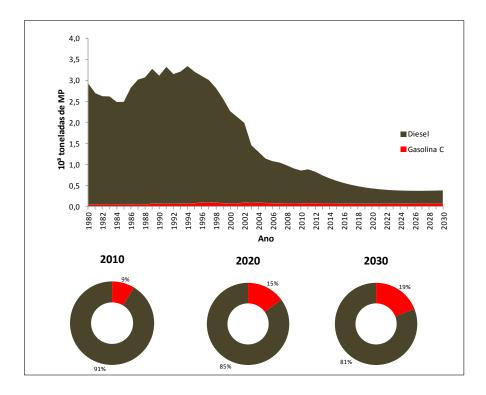



Figura 36: Emissões de MP por tipo de combustível.

## 6.5. Emissões de aldeídos (RCHO)

Os aldeídos são poluentes característicos dos veículos do ciclo Otto, em particular os movidos a etanol hidratado. Desse modo, pode-se observar que a categoria de maior participação na emissão deste poluente é o automóvel (em média 90%).

Observa-se, na Figura 37, que as emissões de RCHO são crescentes no início da década de 80, chegando ao volume máximo de emissões em 1990 (2.427 toneladas) e caindo em seguida com a introdução das fases L2 do PROCONVE em 1992 (1.944 toneladas de RCHO) e L3 em 1998 (1.270 toneladas).



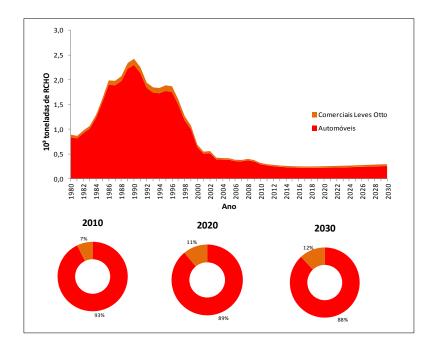



Figura 37: Emissões de RCHO por categoria de veículo.

Ao analisar o impacto dos combustíveis em relação a emissão de RCHO, verifica-se que o etanol hidratado é aquele que apresenta maior participação (53% em 2010 e 68% em 2030). A queda verificada no final da década de 1990 é reflexo da saída dos veículos dedicados a etanol do mercado. Com a introdução dos veículos *flex fuel* a partir de 2003, observa-se um crescimento nas emissões provenientes do etanol hidratado (Figura 38).

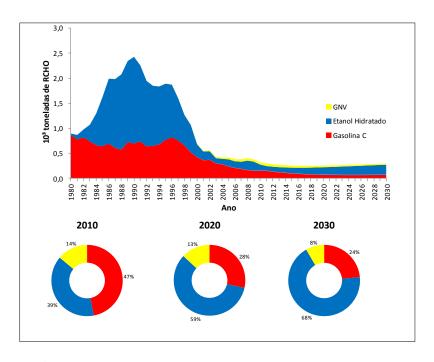



Figura 38: Emissões de RCHO por tipo de combustível.



## 6.6. Emissões de hidrocarbonetos não metanos (NMHC)

No que tange a contribuição de cada categoria na emissão de NMHC, o Estado do Rio de Janeiro possui comportamento similar ao observado no Brasil, destacando-se o automóvel com maior participação no total de emissões de NMHC (em média 55%). Caminhões e ônibus urbanos, apesar da pequena contribuição têm apresentado crescimento na participação das emissões, tendo evoluído de 5% e 6% em 2010 para 10% e 11% em 2030 (Figura 39).

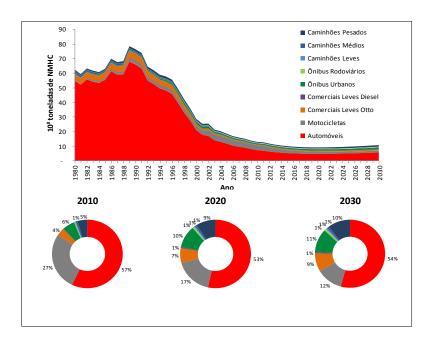



Figura 39: Emissões de NMHC por categoria de veículo.

É possível observar na Figura 40, que como combustíveis que mais se destacam na participação das emissões de NMHC, têm-se a gasolina, que em 2010 representava 73% do total de emissões. No entanto, observa-se uma redução da participação da gasolina C (57% em 2030) e um crescimento do etanol hidratado e do diesel (de 12% cada em 2010 para 17% e 25%, respectivamente).



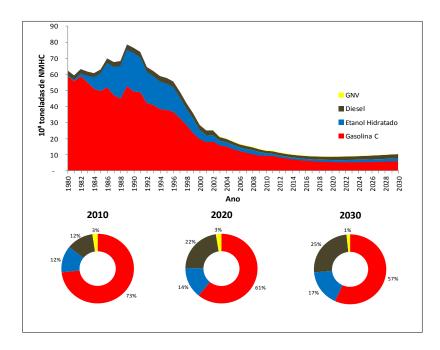
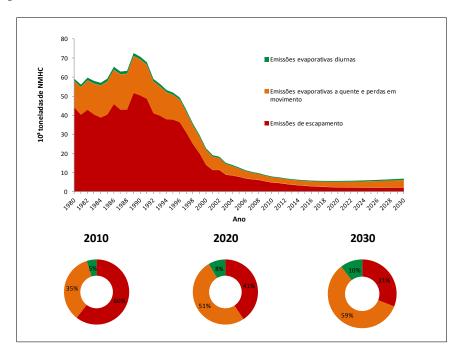




Figura 40: Emissões de NMHC por tipo de combustível.

A Figura 41 apresenta as emissões de NMHC por tipo de emissão, onde é possível verificar a mudança de comportamento da emissão evaporativa e de escapamento ao longo do período analisado.



**Figura 41:** Emissões de NMHC por automóveis e comerciais leves do ciclo Otto por tipo de emissão.



## 6.7. Emissões de metano (CH4)

Na Figura 42 é possível observar a contribuição nas emissões por categoria de veículos. O automóvel aparece como a categoria de maior impacto respondendo em média por 74% das emissões.

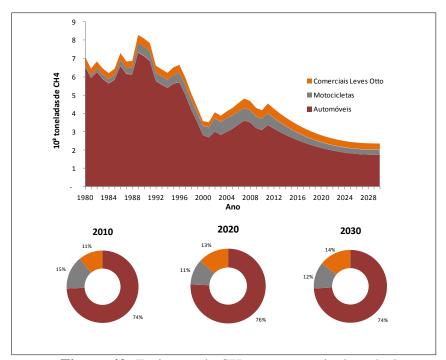



Figura 42: Emissões de CH<sub>4</sub> por categoria de veículo.

Quando avaliado em relação à contribuição dos combustíveis (Figura 43), destaca-se o GNV que representa cerca de 63% das emissões. Esse percentual se comparado ao resultado obtido pelo INEAVAR é maior em cerca de 24%. Isto ocorre devido ao fato da grande representatividade da frota de veículos convertidos a GNV existentes no Rio de Janeiro.



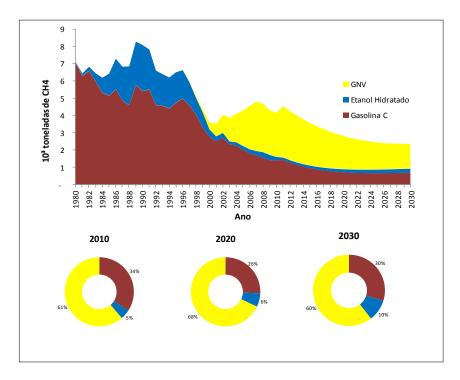



Figura 43: Emissões de CH<sub>4</sub> por tipo de combustível.

## 6.8. Emissões de dióxido de carbono (CO<sub>2</sub>)

No que tange as emissões de CO<sub>2</sub> pode-se verificar que esta tende a ser crescente ao longo do período, sendo as categorias de maior representatividade os automóveis, ônibus urbanos e caminhões pesados (Figura 44).

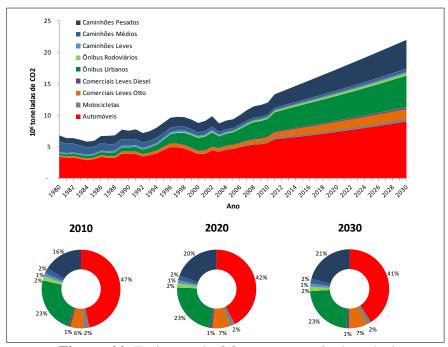



Figura 44: Emissões de CO<sub>2</sub> por categoria de veículo.



Quando avaliado o peso dos combustíveis na emissão de CO<sub>2</sub> (Figura 45), percebe-se que o diesel é o que apresenta maior destaque respondendo por em média 45% das emissões. A gasolina aparece em seguida com cerca de 27% das emissões. Deve-se destacar que, em 2010, 14% das emissões de CO<sub>2</sub> foram provenientes de biocombustíveis, de modo que estas já foram ou serão absorvidas durante a plantação da matéria prima. Estima-se que tal percentual cresça para 18% em 2020 e para 20% em 2030.

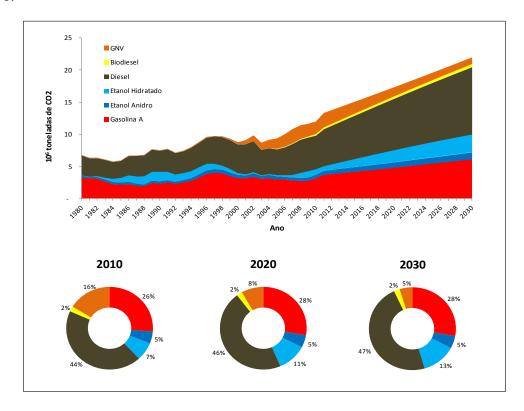



Figura 45: Emissões de CO<sub>2</sub> por tipo de combustível.

## 7. RECOMENDAÇÕES PARA POLÍTICAS DE TRANSPORTES

O setor de transporte é responsável por grande parte das emissões de gases de efeito estufa e poluentes. Com isso, torna-se um setor potencial para as ações de mitigação previstas nos acordos internacionais e políticas sobre mudanças climáticas, além de medidas de adaptação.

O inventário de emissões constitui um importante instrumento que permite conhecer o estado atual das emissões de poluentes e gases de efeito estufa (no caso do CO<sub>2</sub> e CH<sub>4</sub>), elaborar estimativas futuras, e subsidiar políticas públicas voltadas para promover o desenvolvimento de baixo carbono no setor de transporte.

O setor de transporte responde por mais da metade do consumo de combustíveis fósseis no país. No entanto, segundo Banco Mundial (2010) no caso do Brasil este comparado ao de outros países, apresenta intensidade menor de carbono, devido ao amplo uso do



etanol anidro e hidratado como combustível dos veículos do ciclo Otto. Deve considerar ainda, o uso do biodiesel adicionado ao diesel de petróleo. Desse modo, no Estado do Rio de Janeiro este, em 2010, 14% do combustível utilizado pelo setor de transporte foi referente a biocombustíveis.

Ainda segundo o estudo, originaram-se no setor urbano aproximadamente 51% das emissões diretas do setor no ano de 2008, devido ao uso mais intenso de carros particulares, o congestionamento e os sistemas ineficientes de transporte público, especialmente, os que transportam grande quantidade de passageiros/km, como é o caso de metrô e trem.

O inventário de emissões atmosféricas por veículos automotores permite avaliar o grande desafio que o Estado do Rio de Janeiro deverá enfrentar: o de promover o desenvolvimento, com melhoria da infraestrutura de transportes, reduzindo as emissões de poluentes e gases de efeito estufa.

Neste inventário, verificou-se que o Estado do Rio de Janeiro, em 2010, possuía uma frota de cerca de 3 milhões de veículos, sendo em 2010, 88% referente a transporte individual (automóveis e motocicletas) e apenas 3% ônibus e caminhões.

O setor de transportes é um dos mais complexos para se obter uma redução significativa nas emissões de GEE, dada à multiplicidade de agentes envolvidos e ao ônus político necessário para implantar as mudanças.

Um maior incentivo a transportes públicos, medidas reguladoras do uso do automóvel particular como controle de acesso por meio de taxação ou restrição de vagas, o estímulo ao uso de veículos híbridos (combustível/eletricidade), elétricos *plug-in* e a biocombustíveis, como o aumento da eficiência dos motores, são algumas das recomendações do Painel Intergovernamental sobre Mudanças Climáticas - IPCC.

De acordo com o Inventário de emissões de gases de efeito estufa do estado do Rio de Janeiro, as emissões totais de energia para o setor de Transportes, por gás de efeito estufa, foi 11.056,1 Gg de CO<sub>2</sub>eq, representando cerca de 29% das emissões de energia.

Segundo estudo do Banco Mundial (2010) realizado para o Brasil, no caso do transporte de passageiros, a troca de modos de transportes individuais ou de baixa capacidade, para o Sistema de Trânsito de Ônibus Rápido (Sigla BRT, em inglês) e para o Metrô, associada a medidas de gestão de trânsito, seriam potenciais alternativas para a redução das emissões de poluentes e gases de efeito estufa. No eu tange ao transporte de carga, é possível reduzir as emissões de forma significativa através da migração do transporte baseado em rodovias (menor capacidade) para o aquaviário, ferroviário e dutoviário (maior capacidade). Tais estratégias são também aplicáveis ao Estado do Rio de Janeiro,



contudo, caracterizam-se como obstáculos a essa mudança a falta ou inadequada infraestrutura para a transferência intermodal eficiente e a falta de articulação e coordenação entre as esferas de governo.

Ao analisar as possibilidades existentes para o Estado do Rio de Janeiro, deve-se avaliar as opções tecnológicas como o aumento do uso de biocombustível e veículos mais eficientes, além da possibilidade de criar um novo sistema urbano de mobilidade com aumento de transporte de grande capacidade.

A implantação de transporte de alta capacidade em cidades com alta demanda por transporte pode reduzir significativamente os impactos ambientais negativos e outros problemas, entre os quais os seguintes: congestionamentos, conflitos entre circulação de pedestres e veículos, condições precárias de segurança da frota, acidentes, emissão de gases poluentes e de efeito estufa, doenças respiratórias, tempos de viagens, consumo de combustível e deterioração do patrimônio arquitetônico (MOTTA, 2009).

No caso do transporte de passageiro a falta de sistema de transporte de alta capacidade faz com que o uso do carro particular seja cada vez mais intenso, provocando aumento de consumo excessivo tanto por conta da ineficiência do modo, como pelo congestionamento crescente que provoca.

Verificou-se neste estudo que os automóveis convertidos a GNV (a partir de 1992) possuem grande representatividade na frota circulante estimada do Estado do Rio de Janeiro (24%). Cabe considerar que é alta a expectativa da disponibilidade de gás no estado nos próximos anos com a exploração do Pré-sal, com isso, políticas de incentivo ao uso de gás e garantia de competitividade no preço do mercado de combustíveis deverão ser consideradas.

O principal desafio é garantir que os sinais de preço do mercado estejam alinhados ao objetivo de substituir um combustível mais poluente, como é o caso do diesel e gasolina, por combustíveis menos poluentes como o etanol, biodiesel e GNV. Por conta do desequilíbrio dos preços do petróleo, seria necessário um mecanismo financeiro apropriado, de modo a absorver os choques de preços e manter a atratividade do etanol, por exemplo, para os proprietários de veículos.

Mudar o modo de transportes, estímulo o uso de outras fontes de energias mais limpas e renováveis, ao transporte publico eficiente, controle de frota, são alguns exemplos de medidas que contribuem para a mitigação no setor de transportes.



## 8. CONSIDERAÇÕES FINAIS, RECOMENTAÇÕES E LIMITAÇÕES

Considerando como principal requisito para a elaboração do Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro (IEAVAERJ) a possibilidade de comparar seus resultados com aqueles apresentados pelo Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (INEAVAR) optou-se por adotar para a elaboração do inventário estadual a mesma metodologia utilizada para o inventário nacional – *bottom-up*.

Analisando os dados do estado do Rio de Janeiro e comparando aos dados referentes ao Brasil observa-se que o estado estudado representa cerca de 8% das emissões nacionais. Se forem observados os poluentes separadamente destaca-se o CH<sub>4</sub> com 19% das emissões nacionais. Tal fato se deve a utilização do GNV que é o principal responsável na emissão do poluente em questão.

No Rio de Janeiro os automóveis têm destaque especial nas emissões atmosféricas dado que representam a maior parcela de veículos automotores. Destacam-se no Estado os ônibus urbanos e rodoviários que representam cerca de 10% da frota brasileira e há uma previsão de crescimento nesta participação que deverá a chegar a 14% em 2020. Esta é uma constatação que deve ser avaliada, pois pode representar uma política de investimento em transporte público em um modo não tão eficiente quanto o trem ou metrô.

Avaliando-se os resultados das projeções das emissões observa-se a tendência de diminuição dos poluentes com exceção do CO<sub>2</sub> que continuará aumentando até 2030. Este fato pode estar relacionado ao crescimento da economia do país e conseqüentemente ao consumo de combustíveis pelo setor de transportes. Este resultado deve ser avaliado para identificar políticas que adotem modos com maior eficiência energética para reduzir a emissão deste que é o mais importante dos gases de efeito estufa.

No caso do CO<sub>2</sub> destaca-se que a utilização de biocombustíveis vem crescendo, o que pode representar redução na emissão deste gás, pois grande parte dele é absorvido pela cultura de matéria-prima para sua fabricação. Pelas projeções realizadas estima-se que a participação de 14% de emissão de CO<sub>2</sub> por biocombustíveis passará para 20% em 2030. Porém, outras ações e políticas devem ser implementadas para a redução do CO<sub>2</sub> conforme descrito no item 7 deste relatório.

Outro ponto de destaque levantado por este trabalho é com relação a frota de ônibus do estado do Rio de Janeiro que possui uma curva de sucateamento que privilegia a renovação dos veículos, se comparado com a curva nacional e até mesmo de caminhões pesados no mesmo Estado.



Observa-se também um dado que pode influenciar no aumento das emissões que é o crescimento do número de motocicletas no estado. Tal questão pode estar relacionada aos preços e condições de pagamentos que facilitam a compra desses veículos. Aliado a isto existe o fato dos congestionamentos e deficiências no transporte público que incentivam a população a adquirirem tais veículos. No que tange a energia consumida por passageiro, quando comparada ao automóvel a motocicleta possui uma eficiência energética mais baixa, considerando a utilização dos veículos em sua capacidade total

Constatou-se também uma tendência de diminuição da frota de caminhões médios e aumento dos leves e pesados. Isso pode estar relacionado a um melhor perfil de uso da frota de caminhões para transferência de grandes quantidades e maiores distâncias (veículos pesados) e a distribuição de produtos em áreas urbanas com a utilização do caminhão leve. Porém esta situação pode influenciar indiretamente no tráfego das cidades pelo fato de serem introduzidos mais veículos em circulação, o que pode contribuir para o aumento das emissões em um médio e longo prazo.

Outro aspecto que merece destaque é o fato de que 63% da frota de automóveis do estado do Rio de Janeiro possui 10 anos ou menos de uso, o que impacta positivamente nas emissões já que os veículos mais novos possuem sistemas mais eficientes de aproveitamento de energia e contenção de poluentes atmosféricos.

Os veículos *flex* e movidos a GNV vem aumentando também sua participação na frota fluminense melhorando os níveis de emissão de poluentes. Contudo, há uma tendência de redução da frota a GNV segundo os levantamentos e projeções realizadas.

Observam-se também os efeitos do PROCONVE nos resultados das emissões tanto em veículos do ciclo Otto quanto do ciclo Diesel. A cada fase implementada verifica-se reduções significativas nos poluentes e as projeções apontam a mesma tendência.

A principal limitação do levantamento realizado reside na necessidade de obter dados da frota circulante, intensidade de uso e fatores de emissão, por categoria de veículo, tipo de combustível e idade do veículo. Por depender de um procedimento intensivo em dados, sua aplicação prática exige que se procure o melhor conjunto de dados estimados que possam proporcionar os melhores resultados, ao menor custo e dentro do prazo de execução.

Adicionalmente, de modo a adequar os dados disponíveis na base de dados do DETRAN-RJ, a metodologia utiliza dois modelos matemáticos que ajudam a determinar a curva de sucateamento da frota de veículos leves (automóveis e comerciais leves) e pesados (caminhões e ônibus). Esses modelos não representam plenamente a realidade do Estado do Rio de Janeiro sendo a frota circulante utilizada baseada em estimativas.



Em virtude do Estado do Rio de Janeiro possuir uma frota (automóveis movidos a GNV e comerciais leves movidos a GNV) que utiliza gás natural bastante representativa, diferentemente do que foi feito no INEAVAR, adotou-se uma abordagem *bottom-up* para determinação da emissão de poluentes atmosféricos para estas categorias de veículos. No entanto, deve-se ressaltar que tal abordagem é de difícil implementação devido à dificuldade de obter dados consistentes sobre a frota de veículos adaptados para o uso de GNV.

Um outro ponto que merece destaque diz respeito a função de escolha entre os combustíveis, gasolina e etanol, para os usuário de veículos *flex*. Apesar do trabalho utilizar uma metodologia adequada para esta estimativa há um erro inerente ao método que deve ser considerado.

Como recomendação destaca-se a realização periódica deste inventário para comparação da evolução projetada com a observada no decorrer do período avaliado. Para suporte a realização de outros inventários recomenda-se também a atualização periódica das fontes de dados já existentes e criação de outros bancos com informações que permitam identificar melhor a intensidade de uso, dados de frota, fatores de emissão, que são essenciais para a acuracidade das informações e para a qualidade dos resultados.

A elaboração de um programa em parceria com os municípios do estado para a criação de um banco de dados seria importante para a manutenção e monitoramento contínuo das emissões de poluentes pelos veículos automotores. Outra recomendação é a criação de uma sistemática para identificar o efeito que as ações de mitigação propostas a partir dos resultados terão com o decorrer do tempo.

Recomenda-se também que sejam realizados outros inventário que analisem outros poluentes, como por exemplo, SO<sub>x</sub> não incluído neste relatório. Também devem ser realizados inventários referentes às emissões relativas aos outros modos de transporte, tanto para carga quanto passageiros.

Com base nesses inventários seria possível projetar cenários que levassem em conta a substituição modal no Estado do Rio de Janeiro e assim gerar mais subsídios para elaboração de políticas benéficas ao meio ambiente.

Entende-se que a realização deste inventário auxilia na identificação de uma lacuna na geração e disponibilidade dos dados e indica para as instituições e órgãos a eles relacionados que tipo de informação deveria estar disponível para aprimorar a elaboração de inventários futuros.



## REFERÊNCIAS BIBLIOGRÁFICAS

- ABRACICLO (2011) Dados referentes a venda de motocicletas. Disponível em http://abraciclo.com.br/index.php?option=com\_content&view=article&id=6%3Avendas&catid=6%3Amotocicletas&Ite mid=37. Acesso em Ago/2011.
- AMBEV (2011). Dados sobre rendimento e intensidade de uso de caminhões. Comunicação pessoal.
- ANAC (2009). Anuário do Transporte Aéreo. Dados Estatísticos e Econômicos. 2ª Edição, Volume Único, Agência Nacional de Aviação Civil, Rio de Janeiro, RJ.
- ANFAVEA (2010) Anuário da Indústria Automobilística Brasileira. Associação Nacional dos Fabricantes de Veículos Automotores, ANFAVEA, São Paulo, SP, p.: 82.
- ANFAVEA (2011) Anuário da Indústria Automobilística Brasileira. Associação Nacional dos Fabricantes de Veículos Automotores, ANFAVEA, São Paulo, SP.
- ANP (2009) Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis 2008, Agência Nacional de Petróleo, RJ, Brasil;
- ANP (2011) Informação sobre venda de combustíveis. Agência Nacional de Petróleo. Disponível em http://www.anp.gov.br/?pg=58033&m=&t1=&t2=&t3=&t4=&ar=&ps=&cachebust=131990920 1260. Acesso em Set/2011.
- ANTAQ (2009). *Anuário Estatístico 2009*. Agência Nacional de Transportes Aquaviários. Disponível na URL <www.antaq.gov.br/portal/anuarios/portuario2009/index.htm> Acessado em maio/2011.
- ANTP (2009). Sistema de Informações da Mobilidade Urbana Relatório Comparativo 2003-2009. Associação Nacional dos Transportes Públicos, ANTP, São Paulo, SP.
- ANTT (2009). *Anuário Estatístico dos Transportes Terrestres AETT/2009*. Agência Nacional de Transportes Terrestres. Disponível na URL <www.antt.gov.br/informacoestecnicas/aett/aett\_2009/principal.asp>. Acessado em abril/2011.
- ANTT (2010). Relatório Anual 2010. Agência Nacional de Transportes Terrestres.
- BANCO MUNDIAL (2010) Estudo de Baixo Carbono para o Brasil. Banco Internacional para Reconstrução e Desenvolvimento / Banco Mundial.
- CACHIOLO, Antonio (2011). Dados sobre rendimento e intensidade de uso de caminhões. Comunicação pessoal.
- CEG (2011) Dados sobre venda de gás e total de veículos convertidos. Comunicação pessoal.
- CENTRAL(2003). Plano Diretor de Transportes Urbano da Região Metropolitana do Rio de Janeiro 2002/2003. Companhia Estadual de Engenharia de Transporte e Logística, Rio de Janeiro, RJ.
- CETESB (2011) Inventário de Emissões dos Gases do Efeito Estufa Associado ao Transporte Rodoviário no Estado de São Paulo. 1º Relatório de referência do Estado de São Paulo de emissões e remoções antrópicas de gases de efeito estufa, período de 1990 a 2008. Companhia Ambiental do Estado de São Paulo (CETESB).
- CHEN, S. H., 1985, Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems, 17, 113-129.
- D'AGOSTO, M. A. (2004) Análise da Eficiência da Cadeia Energética para as Principais Fontes de Energia Utilizadas em Veículos Rodoviários no Brasil. Tese Universidade Federal do Rio de Janeiro, COPPE.



- DETRAN-RJ (2011) Dados sobre veículos cadastrados no Estado do Rio de Janeiro. CD de dados.
- EPE (2007) Potencial de redução de emissões de co2 em projetos de produção e uso de biocombustíveis. Empresa de Pesquisa Energética. Brasília.
- EPE (2010) Balanço Energético Nacional, 2010, Empresa de pesquisa Energética, Ministério de Minas e Energia, DF, Brasil;
- FETRANSPOR (2011) Dados sobre rendimento, intensidade de uso e frota ônibus no Estado do Rio de Janeiro. Comunicação pessoal.
- FIPE (2011) Dados sobre transporte de carga e passageiro. Disponível na URL < http://www.fipe.org.br/web/index.asp> Acessado em maio/2011.
- GASNET (2011) Informação sobre número de veículos convertidos por ano. Disponível em http://www.gasnet.com.br/novo\_gnv/ perfil\_gnv\_brasil.asp. Acesso em set/2011.
- GOLDEMBERG, José; NIGRO, Francisco E.B.; COELHO, Suani T. (2008) Bioenergia no estado de São Paulo: situação atual, perspectivas, barreiras e propostas. São Paulo: Imprensa Oficial do Estado de São Paulo.
- INEA (2011) Informações disponíveis sobre os limites de emissão do PROCONVE e PROMOT. Disponível em http://www.inea.rj.gov.br/fma/proconve-promot.asp. Acesso em Out/2011.
- INMET (2011) Dados sobre temperatura mínima, média e máxima no Estado do Rio de Janeiro. Dados fornecidos por email em set/2011.
- Internet: http://www.mme.gov.br
- LIANG, G., WANG, M., 1991, A fuzzy multi-criteria decision-making method for facility site selection. Int. j. Prod. Res., vol. 29, nr. 11, p. 2313-2330.
- MCT (2006) Primeiro Inventário Brasileiro de Emissões Antrópicas de Gases de Efeito Estufa. Relatórios de Referência: Emissões de Dióxido de Carbono por Queima de Combustíveis: Abordagem Top-Down. Ministério da Ciência e Tecnologia Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia COPPE. Brasília, 2006.
- MMA (2010) Primeiro Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários. Relatório Final. Ministério do Meio Ambiente.
- MME, 2006, Balanço Energético Nacional 2006. Ministério de Minas e Energia. Brasil.
- MONTGOMERY, D.C, G.C. RUNGER. Estatistica aplicada e probabilidade para engenheiros. Rio de Janeiro:LTC, 2003.
- MOTTA, R. A. (2009). Benefícios Ambientais em Decorrência da Implantação de Sistemas de Transporte Rápido e de Alta Capacidade de ônibus - O Caso do Transmilênio. 2009. Dissertação (Mestrado em Engenharia de Transportes) - Universidade Federal do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico.
- RECHDER, Heraldo e FONSECA, Wagner (2003) Como evoluíram os caminhões. Transporte Moderno, ano 40, n. 403, abril/maio, OTM Editora, Ltda, São Paulo, SP, p.: 30-31.



# Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro

Rio de Janeiro, 1 de novembro de 2011

Luiz Pinguelli Rosa

Coordenador do Projeto

Segen Farid Estefen

Diretor Superintendente da Fundação COPPETEC



## ANEXO I – VEÍCULOS CADASTRADOS NO DETRAN-RJ.

Conforme solicitação realizada pela equipe responsável pela elaboração do inventário de emissões atmosféricas por veículos automotores do Estado do Rio de Janeiro, o DETRAN-RJ disponibilizou os dados referentes aos veículos cadastrados em seu banco de dados até o mês de agosto de 2011. A tabela 16 mostra os dezesseis tipos de informações disponibilizados para cada veículo existente no banco de dados fornecido.

Tabela 16: Informações do banco de dados do DETRAN-RJ.

| ITEM | INFORMAÇÃO                         | OBSERVAÇÃO                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1    | Município de emplacamento          | 92 municípios estão cadastrados como opção de emplacamento.                                                                                                                                                                                                                          |  |  |  |  |  |  |
| 2    | Ano de fabricação                  | Informação em ano, por exemplo, 1980.                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 3    | Ano modelo                         | Idem ao item 2.                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 4    | Tipo                               | Opções: ciclomotor, motoneta, motocicleta, triciclo, automóvel, microônibus, ônibus, reboque, semireboque, camioneta, caminhão, caminhão trator, trator de rodas, trator de esteiras, trator misto, quadriciclo, chassi plataforma, caminhonete, side car, utilitário e motor casa.  |  |  |  |  |  |  |
| 5    | Espécie                            | Opções: passageiro, carga, misto, competição, tração animal, especial e coleção.                                                                                                                                                                                                     |  |  |  |  |  |  |
| 6    | Categoria                          | Opções: particular, aluguel, oficial, experiência, aprendizagem, fabricante, missão diplomática, corpo consular, organismo internacional, corpo diplomático, representante de órgão internacional, assistente de cooperativa internacional.                                          |  |  |  |  |  |  |
| 7    | Marca/Modelo                       | Existem 23051 opções de marca/modelo.                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 8    | Combustível                        | Opções: álcool, gasolina, diesel, gasogênio, gás metano, elétrico de fonte interna, elétrico de fonte externa, gasolina + Gmv, álcool + Gmv, diesel + Gmv, Gasolina + Gnv, Álcool + Gnv, Diesel + Gnv, Gnv, álcool+gasolina (Flex), álcool + gasolina (flex) + Gnv e não motorizado. |  |  |  |  |  |  |
| 9    | Capacidade de passageiros          | Informação apresentada em um dado numérico de 3 dígitos.                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 10   | Capacidade de carga                | Informação apresentada em um dado numérico de 5 dígitos.                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 11   | Potência (HP)                      | Informação apresentada em um dado numérico de 3 dígitos.                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 12   | Cilindrada                         | Informação apresentada em um dado numérico de 4 dígitos.                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 13   | PBT                                | Informação apresentada em um dado numérico de 6 dígitos.                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 14   | Carroceria                         | Existem 32 tipos de carrocerias cadastradas.                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| 15   | Data do 1º emplacamento            | Informação apresentada em um dado numérico de 8 dígitos. (ddmmaaaa, por exemplo: 16051978)                                                                                                                                                                                           |  |  |  |  |  |  |
| 16   | Data da transferência (se existir) | Idem ao item 15.                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

Fonte: Banco de dados do DETRAN-RJ utilizado na pesquisa.



Em relação ao ano de fabricação, o banco de dados do DETRAN-RJ possui veículos cadastrados do ano de 1900 até 2011. No entanto, visando seguir a metodologia adotada pelo 1º Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários (INEAVAR), o qual considerou as vendas de veículos com ano de fabricação a partir de 1957, provenientes da base de dados da Associação Nacional de Fabricantes de Veículos Automotores (ANFAVEA), adotou-se para a elaboração deste estudo este mesmo ano, sendo considerado como início da série histórica de veículos cadastrados no DETRAN-RJ.

Os veículos de ano de fabricação 2011 ainda não estão representados em sua totalidade, uma vez que o banco de dados é referente aos veículos cadastrados até agosto de 2011. Sendo assim, optou-se por utilizar como final da série histórica o ano de 2010. Os veículos foram classificados em dezessete tipos diferentes e estão apresentados na tabela 17, onde consta as referências do banco de dados do DETRAN-RJ. Dos dezessete tipos foram excluídos seis devido à pequena representatividade em relação ao total.

Tabela 17: Tipos de veículos utilizados e descartados na pesquisa.

| VEÍCULOS          | CARACTERÍSTICA                          | S NO BANCO DE DADOS DO D         | ETRAN-RJ   |
|-------------------|-----------------------------------------|----------------------------------|------------|
| VEICULUS          | TIPO                                    | COMBUSTÍVEL                      | OBSERVAÇÃO |
| Automóveis        | Automóvel.                              | Gasolina, Gasolina + Gmv,        | Utilizado. |
| gasolina          |                                         | Gasolina + Gnv.                  |            |
| Automóveis etanol | Automóvel.                              | Etanol, Etanol + Gnv.            | Utilizado. |
| Automóveis flex   | Automóvel.                              | álcool+gasolina (Flex), álcool + | Utilizado. |
|                   |                                         | gasolina (flex) + Gnv.           |            |
| Automóveis diesel | Automóvel.                              | Diesel e Diesel + Gnv.           | Descartado |
| Comerciais leves  | Camioneta, caminhonete e                | Gasolina, Gasolina + Gmv,        | Utilizado. |
| gasolina          | utilitário.                             | Gasolina + Gnv.                  |            |
| Comerciais leves  | Camioneta, caminhonete e                | Etanol, Etanol + Gnv.            | Utilizado. |
| etanol            | utilitário.                             |                                  |            |
| Comerciais leves  | Camioneta, caminhonete e                | álcool+gasolina (Flex), álcool + | Utilizado. |
| flex              | utilitário. gasolina (flex) + Gnv.      |                                  |            |
| Comerciais leves  | Camioneta, caminhonete e                | Diesel.                          | Utilizado. |
| diesel            | utilitário.                             |                                  |            |
| Caminhões         | Caminhão, caminhão trator.              | Gasolina, Gasolina + Gnv.        | Descartado |
| gasolina          |                                         |                                  |            |
| Caminhões etanol  | Caminhão, caminhão trator.              | Etanol, Etanol + Gnv.            | Descartado |
| Caminhões diesel  | Caminhão, caminhão trator.              | Diesel.                          | Utilizado. |
| Ônibus gasolina   | Ônibus e microônibus.                   | Gasolina, Gasolina + Gmv,        | Descartado |
| ^                 | ^                                       | Gasolina + Gnv.                  |            |
| Ônibus etanol     | Ônibus e microônibus.                   | Etanol, Etanol + Gnv.            | Descartado |
| Ônibus flex       | Ônibus e microônibus.                   | álcool+gasolina (Flex), álcool + | Descartado |
| ^ .               | ^                                       | gasolina (flex) + Gnv.           |            |
| Ônibus diesel     | Ônibus e microônibus.                   | Diesel.                          | Utilizado. |
| Motocicletas      | Ciclomotor, motoneta,                   | Gasolina.                        | Utilizado. |
| gasolina          | motocicleta, triciclo e<br>quadriciclo. |                                  |            |
| Motocicletas flex | Ciclomotor, motoneta,                   | álcool+gasolina (Flex).          | Utilizado. |
|                   | motocicleta, triciclo e<br>quadriciclo. |                                  |            |



A tabela 18 mostra o total de veículos anteriores a 1957 não considerados no estudo por tipo e combustível que representa apenas 0,074% da frota total.

**Tabela 18:** Quantidade de veículos com ano de fabricação anteriores a 1957.

| VEÍCULOS       |          | Total  |      |        |       |
|----------------|----------|--------|------|--------|-------|
| VEICULUS       | Gasolina | Etanol | Flex | Diesel | Total |
| Automóveis     | 2.569    | 23     | -    | 42     | 2.634 |
| Comercial leve | 462      | 6      | -    | 28     | 496   |
| Caminhão       | 273      | 1      | -    | 160    | 434   |
| Ônibus         | 1        | -      | -    | 7      | 8     |
| Motocicleta    | 180      | -      | -    | -      | 180   |
| Total          | 3.485    | 30     | -    | 237    | 3.752 |

A tabela 19 mostra o total de veículos com ano de fabricação 2011 que constam na base de dados do DETRAN-RJ e que foram considerados no estudo como parte da projeção da frota para o ano de 2011<sup>5</sup>.

**Tabela 19:** Quantidade de veículos com ano de fabricação 2011.

| VEÍCULOS       |          | COMBUST | <b>ÍVEL</b> |        | - Total |
|----------------|----------|---------|-------------|--------|---------|
| VEICULOS       | Gasolina | Etanol  | Flex        | Diesel | Total   |
| Automóveis     | 7.286    | 1       | 88.134      | -      | 95.421  |
| Comercial leve | 5.390    | -       | 11.112      | 3.081  | 19.583  |
| Caminhão       | -        | -       | -           | 3.338  | 3.338   |
| Ônibus         | -        | -       | $90^{(1)}$  | 3.375  | 3.465   |
| Motocicleta    | 20.386   | -       | 12.217      | -      | 32.603  |
| Total          | 33.062   | 1       | 111.553     | 9.794  | 154.410 |

Nota: (1) Não foi possível identificar o que seria um ônibus "flex". Para todos os efeitos, estes veículos, quando existiram foram excluídos em função da baixa representatividade da sua quantidade.

A tabela 20 mostra o total de veículos com ano de fabricação entre 1957 e 2010.

a parcela de veículos já existente pra este ano.

<sup>&</sup>lt;sup>5</sup> Uma vez que Inventário de Emissões Atmosféricas de Veículos automotores do Estado do Rio de Janeiro considera 2010 como o ano final de coleta de dados, a frota de 2011 foi estimada, sendo que os valores estimados consideram



Tabela 20: Quantidade de veículos com ano de fabricação entre 1957 e 2010.

| VEÍCULOS       |           | COMBUST | <b>TÍVEL</b> |         | Total     |
|----------------|-----------|---------|--------------|---------|-----------|
| VEICULUS       | Gasolina  | Etanol  | Flex         | Diesel  | Total     |
| Automóveis     | 2.342.726 | 440.422 | 863.199      | 1.290   | 3.647.637 |
| Comercial leve | 269.327   | 26.367  | 79.872       | 66.668  | 442.234   |
| Caminhão       | 3.744     | 167     | -            | 132.917 | 136.828   |
| Ônibus         | 2.647     | 39      | 1.914        | 64.964  | 69.564    |
| Motocicleta    | 732.024   | -       | 20.690       | -       | 752.714   |
| Total          | 3.350.468 | 466.995 | 965.675      | 265.839 | 5.048.977 |

Conforme apresentado na tabela 16, dos dados resultantes da tabela 20, optou-se por excluir ainda, os caminhões a gasolina, caminhões a etanol, ônibus a gasolina, ônibus a etanol, ônibus *flex* e automóveis diesel. A eliminação destes veículos foi realizada devido a pouca representatividade (0,19% do total de veículos considerados), como verificado na tabela 22, em relação ao total e a não possuírem fatores de emissões específicos. Logo, a tabela 21 apresenta o total de veículos utilizados para o cálculo das emissões.

Tabela 21: Quantidade de veículos utilizados na pesquisa por tipo e combustível.

| VEÍCULOS       |           | COMBUST | <b>ÍVEL</b> |         | Total     |
|----------------|-----------|---------|-------------|---------|-----------|
| VEICULUS       | Gasolina  | Etanol  | Flex        | Diesel  | Total     |
| Automóveis     | 2.342.726 | 440.422 | 863.199     | -       | 3.646.347 |
| Comercial leve | 269.327   | 26.367  | 79.872      | 66.668  | 442.234   |
| Caminhão       | -         | =       | -           | 132.917 | 132.917   |
| Ônibus         | -         | -       | -           | 64.964  | 64.964    |
| Motocicleta    | 732.024   | -       | 20.690      | -       | 752.714   |
| Total          | 3.344.077 | 466.789 | 963.761     | 264.549 | 5.039.176 |

A tabela 22 mostra o percentual dos dados utilizados em relação ao banco de dados do DETRAN-RJ para os veículos com ano de fabricação até 2010. Observa-se que em todos os dados está sendo utilizado um valor maior do que 99% do total cadastrado no banco de dados após os cortes realizados.



Tabela 22: Percentual utilizado em relação ao banco de dados original do DETRAN-RJ com ano de fabricação até 2010.

| VEÍCULOS       |          | Total  |         |        |        |
|----------------|----------|--------|---------|--------|--------|
| VEICULUS       | Gasolina | Etanol | Flex    | Diesel | 1 otai |
| Automóveis     | 99,89%   | 99,99% | 100,00% | 0,00%  | 99,89% |
| Comercial leve | 99,83%   | 99,98% | 100,00% | 99,96% | 99,89% |
| Caminhão       | 0,00%    | 0,00%  |         | 99,88% | 96,83% |
| Ônibus         | 0,00%    | 0,00%  | 0,00%   | 99,99% | 93,38% |
| Motocicleta    | 99,98%   |        | 100,00% |        | 99,98% |
| Total          | 99,71%   | 99,95% | 99,80%  | 99,43% | 99,73% |

A tabela 23 e 24 apresentam o número de veículos cadastrados no DETRAN-RJ por ano de fabricação por tipo de combustível respectivamente após a exclusão de dados conforme apresentado anteriormente. Para a montagem destas últimas tabelas de dados ainda foram descartados: os automóveis *flex* (132 veículos) e veículos comerciais leves *flex* (32 veículos) com ano de fabricação anterior a 2003, pela sua pouca significância em relação a frota total (0,004% da frota de automóveis e comerciais leves) e pelo fato de representarem um aparente engano de classificação, visto que os veículos *flexible-fuel* somente começaram a ser comercializados em 2003.



Tabela 23: Automóveis, comerciais leves e motocicletas por ano de fabricação e tipo de combustível considerados - base do DETRAN-RJ.

|      |          | AUTOMÓVEI | ombustive<br>s |          | COMERCI |           | MOTOCICLETAS |                |              |
|------|----------|-----------|----------------|----------|---------|-----------|--------------|----------------|--------------|
| ANO  | GASOLINA | ETANOL    | S<br>FLEX FUEL | GASOLINA | ETANOL  | FLEX FUEL | DIESEL       | GASOLINA       | FLEX FLUEL   |
| 1957 | 283      | 0         | 0              | 74       | 0       | 0         | 7            | GASOLINA<br>36 | - TLEA FLUEL |
| 1958 | 250      | 0         | 0              | 76       | 0       | 0         | 6            | 33             |              |
| 1959 | 614      | 0         | 0              | 140      | 0       | 0         | 9            | 46             |              |
| 1960 | 1.341    | 0         | 0              | 202      | 0       | 0         | 4            | 46             | -            |
| 1961 | 2.297    | 0         | 0              | 243      | 0       | 0         | 15           | 65             | -            |
| 1962 | 3.425    | 0         | 0              | 319      | 0       | 0         | 22           | 66             | -            |
| 1963 | 3.811    | 0         | 0              | 335      | 0       | 0         | 21           | 47             | -            |
| 1964 | 5.333    | 0         | 0              | 396      | 0       | 0         | 55           | 37             | -            |
| 1965 | 6.084    | 0         | 0              | 379      | 0       | 0         | 52           | 36             | -            |
| 1966 | 8.781    | 0         | 0              | 503      | 0       | 0         | 35           | 33             | -            |
| 1967 | 10.681   | 0         | 0              | 630      | 0       | 0         | 51           | 41             | -            |
| 1968 | 16.062   | 0         | 0              | 842      | 0       | 0         | 69           | 84             | -            |
| 1969 | 15.376   | 0         | 0              | 842      | 0       | 0         | 107          | 97             | -            |
| 1970 | 19.919   | 3         | 0              | 1.037    | 0       | 0         | 85           | 130            | -            |
| 1971 | 21.232   | 0         | 0              | 1.157    | 0       | 0         | 82           | 231            | -            |
| 1972 | 32.113   | 0         | 0              | 1.834    | 0       | 0         | 160          | 336            | -            |
| 1973 | 34.109   | 2         | 0              | 2.395    | 11      | 0         | 190          | 726            | -            |
| 1974 | 46.602   | 0         | 0              | 3.254    | 0       | 0         | 277          | 1.405          | -            |
| 1975 | 47.926   | 167       | 0              | 3.491    | 15      | 0         | 207          | 674            | -            |
| 1976 | 56.817   | 208       | 0              | 5.545    | 28      | 0         | 275          | 803            | -            |
| 1977 | 56.845   | 317       | 0              | 4.316    | 72      | 0         | 323          | 1.788          | -            |
| 1978 | 75.294   | 460       | 0              | 4.400    | 103     | 0         | 383          | 1.807          | -            |
| 1979 | 72.497   | 646       | 0              | 4.068    | 88      | 0         | 640          | 3.858          | -            |
| 1980 | 66.183   | 6.983     | 0              | 3.294    | 229     | 0         | 707          | 7.196          | -            |
| 1981 | 36.124   | 12.748    | 0              | 1.729    | 271     | 0         | 851          | 8.380          | -            |
| 1982 | 48.591   | 10.405    | 0              | 2.511    | 771     | 0         | 1.236        | 11.791         | -            |
| 1983 | 25.845   | 46.633    | 0              | 1.872    | 1.386   | 0         | 776          | 12.606         | -            |
| 1984 | 7.898    | 47.370    | 0              | 1.352    | 1.856   | 0         | 753          | 7.092          | -            |
| 1985 | 7.691    | 54.773    | 0              | 1.420    | 2.396   | 0         | 767          | 6.710          | -            |
| 1986 | 10.897   | 65.978    | 0              | 1.638    | 3.303   | 0         | 942          | 8.547          | -            |
| 1987 | 6.072    | 42.054    | 0              | 1.443    | 3.372   | 0         | 899          | 9.577          | -            |
| 1988 | 9.930    | 53.351    | 0              | 2.034    | 3.637   | 0         | 1.047        | 9.770          | -            |
| 1989 | 28.415   | 35.473    | 0              | 3.038    | 2.445   | 0         | 1.258        | 8.484          | -            |
| 1990 | 52.775   | 6.422     | 0              | 5.950    | 509     | 0         | 1.094        | 6.702          | -            |
| 1991 | 53.177   | 11.477    | 0              | 5.788    | 945     | 0         | 1.164        | 4.913          | -            |
| 1992 | 51.743   | 11.838    | 0              | 5.245    | 1.314   | 0         | 744          | 2.511          | -            |
| 1993 | 74.411   | 15.224    | 0              | 7.513    | 1.804   | 0         | 1.407        | 3.050          | -            |
| 1994 | 92.955   | 6.912     | 0              | 8.867    | 961     | 0         | 1.352        | 4.792          | -            |
| 1995 | 129.834  | 1.805     | 0              | 14.856   | 444     | 0         | 2.044        | 8.914          | -            |
| 1996 | 130.538  | 261       | 0              | 18.430   | 71      | 0         | 920          | 11.675         | -            |
| 1997 | 138.938  | 58        | 0              | 18.788   | 21      | 0         | 1.610        | 16.422         | -            |
| 1998 | 117.405  | 52        | 0              | 12.984   | 5       | 0         | 2.219        | 17.379         | -            |
| 1999 | 95.699   | 217       | 0              | 8.981    | 20      | 0         | 1.923        | 17.006         | -            |
| 2000 | 107.283  | 1.360     | 0              | 11.619   | 31      | 0         | 2.975        | 23.933         | -            |
| 2001 | 115.279  | 1.814     | 0              | 10.806   | 60      | 0         | 3.455        | 31.123         | -            |
| 2002 | 108.408  | 2.405     | 0              | 10.109   | 67      | 0         | 2.142        | 35.182         | -            |
| 2003 | 86.307   | 1.426     | 2.490          | 8.293    | 54      | 369       | 1.731        | 32.521         | -            |
| 2004 | 80.129   | 919       | 24.922         | 9.691    | 37      | 2.051     | 2.560        | 34.738         | -            |
| 2005 | 43.964   | 591       | 64.804         | 8.757    | 41      | 4.803     | 2.715        | 38.182         | -            |
| 2006 | 21.535   | 57        | 102.139        | 5.166    | 0       | 9.192     | 2.934        | 50.383         | -            |
| 2007 | 16.436   | 7         | 137.388        | 5.827    | 0       | 12.686    | 3.941        | 82.856         | -            |
| 2008 | 13.837   | 5         | 157.988        | 9.300    | 0       | 14.481    | 5.304        | 106.787        | 1            |
| 2009 | 11.522   | 1         | 185.153        | 9.970    | 0       | 16.263    | 4.961        | 47.481         | 7.214        |
| 2010 | 15.213   | 0         | 188.183        | 15.578   | 0       | 20.006    | 7.162        | 52.896         | 13.475       |



Tabela 24: Caminhões e ônibus por ano de fabricação e tipo de combustível considerados - base do DETRAN-RJ.

| ANO  | CAMINHÃO | ÔNIBUS |
|------|----------|--------|
|      | DIESEL   | DIESEL |
| 1957 | 125      | 5      |
| 1958 | 236      | 4      |
| 1959 | 339      | 1      |
| 1960 | 349      | 9      |
| 1961 | 305      | 6      |
| 1962 | 476      | 7      |
| 1963 | 364      | 1      |
| 1964 | 400      | 7      |
| 1965 | 455      | 11     |
| 1966 | 675      | 10     |
| 1967 | 958      | 29     |
| 1968 | 1.287    | 24     |
| 1969 | 1.556    | 35     |
| 1970 | 1.425    | 32     |
| 1971 | 1.355    | 48     |
| 1972 | 1.974    | 51     |
| 1973 | 2.685    | 91     |
| 1974 | 3.186    | 151    |
| 1975 | 3.327    | 146    |
| 1976 | 3.494    | 272    |
| 1977 | 4.675    | 263    |
| 1978 | 4.718    | 317    |
| 1979 | 3.589    | 362    |
| 1980 | 3.119    | 446    |
| 1981 | 2.742    | 387    |
| 1982 | 2.192    | 518    |
| 1983 | 1.770    | 566    |
| 1984 | 1.516    | 397    |
| 1985 | 2.528    | 334    |
| 1986 | 3.521    | 469    |
| 1987 | 2.833    | 476    |
| 1988 | 2.566    | 823    |
| 1989 | 2.183    | 685    |
| 1990 | 1.878    | 446    |
| 1991 | 2.029    | 536    |
| 1992 | 1.132    | 458    |
| 1993 | 1.521    | 752    |
| 1994 | 1.933    | 1.067  |
| 1995 | 4.127    | 2.732  |
| 1996 | 2.221    | 2.416  |
| 1997 | 2.862    | 2.649  |
| 1998 | 2.940    | 2.335  |
| 1999 | 2.231    | 1.352  |
| 2000 | 2.765    | 2.299  |
| 2001 | 3.103    | 2.002  |
| 2002 | 3.028    | 1.950  |
| 2003 | 2.655    | 2.380  |
| 2004 | 3.249    | 3.393  |
| 2005 | 3.556    | 3.426  |
| 2006 | 3.404    | 3.656  |
| 2007 | 4.861    | 4.776  |
| 2007 | 6.564    | 6.933  |
| 2008 | 5.801    | 5.297  |
|      |          |        |
| 2010 | 8.134    | 7.126  |



## ANEXO II – ESTIMATIVA DE LICENCIAMENTO DE VEÍCULOS NOVOS NO RIO DE JANEIRO POR MEIO DOS DADOS DA ANFAVEA

Os dados obtidos do DETRAN-RJ representam o cadastro de veículos ativos – aqueles que foram introduzidos no cadastro por terem sido vendidos no Rio de Janeiro (1ª licença) ou transferidos de outros estados para o Rio de Janeiro menos os que foram retirados do cadastro por baixa ou por transferência para outros estados.

Assim sendo, é necessário verificar se os dados do cadastro do DETRAN-RJ representam uma boa estimativa da entrada de veículos na frota do estado do Rio de Janeiro. Isso pode ser feito comparando-se os dados do cadastro do DETRAN-RJ com as estimativas de vendas de veículos para o estado do Rio de Janeiro por meio dos dados disponibilizados pela ANFAVEA e pela ABRACICLO, o que será feito no Anexo IV, a partir dos resultados obtidos no Anexo II e III.

No anuário da ANFAVEA do ano de 2011 (ANFAVEA, 2011), encontram-se os dados de licenciamento de veículo novos por combustível no Brasil do ano de 1957 até 2010. A tabela 25 apresenta os dados para automóveis e comerciais leves e a tabela 26 para caminhões e ônibus.

O licenciamento de veículos novos no estado do Rio de Janeiro foi estimado de acordo com a Equação AII.1.

$$L_{i,j,t}^{RJ} = L_{i,j,t}^{BR}.V_{i,j}^{RJ}$$
 AII.1

Onde:  $L_{i,j,t}^{RJ}$ : Licenciamento de veículos novos no estado do Rio de Janeiro para no ano i e veículo i:

 $L_{i,j,t}^{BR}$ : Licenciamento de veículos novos no Brasil para no ano i e veículo j;

 $V_{i,j}^{RJ}$ : Percentual de vendas de veículos novos no estado do Rio de Janeiro para o ano i e veículo j;

j: automóvel, comerciais leves, caminhão ou ônibus;

t: gasolina, etanol, *flex* ou diesel.

Só se dispunha do valor dos percentuais de vendas de veículos novos no estado do Rio de Janeiro para o período de 1985 a 2010 e por tipo de veículo, não se dispunha deste percentual por tipo de veículo e combustível, logo foi adotado um valor único por tipo de veículo por ano conforme apresentado na equação AII.1. A tabela 27 apresenta os percentuais encontrados para os anos em que estavam disponíveis as informações nos anuários da ANFAVEA. Para os anos anteriores a 1985 foi considerado o mesmo percentual referente a este ano e para os anos de 1991 e 1992 foi feita uma interpolação com os valores dos anos de 1990 e 1993.

A tabela 28 apresenta o valor estimado do licenciamento anual de automóveis e veículos novos no estado do Rio de Janeiro e a tabela 29 para caminhões e ônibus.



Tabela 25: Licenciamento de automóveis e comerciais leves novos por combustível -1957/2010 no Brasil.

|       | - 1937/2010 IIO DI asii. |         |           |        |                    |        |             |                  |                        |         |            |                  |
|-------|--------------------------|---------|-----------|--------|--------------------|--------|-------------|------------------|------------------------|---------|------------|------------------|
| ANO   |                          | AUTOM   | IOVEIS    |        |                    |        | CIAIS LEVES |                  |                        |         | ULOS LEVES |                  |
| 12.10 | Gasolina                 | Etanol  | Flex fuel | Diesel | Gasolina           | Etanol | Flex fuel   | Diesel           | Gasolina               | Etanol  | Flex fuel  | Diesel           |
| 1957  | 1.172                    | 0       | 0         | 0      | 9.838              | 0      | 0           | 0                | 11.010                 | 0       | 0          | 0                |
| 1958  | 3.682                    | 0       | 0         | 0      | 26.527             | 0      | 0           | 0                | 30.209                 | 0       | 0          | 0                |
| 1959  | 14.371                   | 0       | 0         | 0      | 41.522             | 0      | 0           | 466              | 55.893                 | 0       | 0          | 466              |
| 1960  | 40.980                   | 0       | 0         | 0      | 48.207             | 0      | 0           | 310              | 89.187                 | 0       | 0          | 310              |
| 1961  | 60.132                   | 0       | 0         | 0      | 55.322             | 0      | 0           | 4                | 115.454                | 0       | 0          | 4                |
| 1962  | 83.541                   | 0       | 0         | 0      | 66.530             | 0      | 0           | 538              | 150.071                | 0       | 0          | 538              |
| 1963  | 94.619                   | 0       | 0         | 0      | 53.695             | 0      | 0           | 1.489            | 148.314                | 0       | 0          | 1.489            |
| 1964  | 103.427                  | 0       | 0         | 0      | 51.458             | 0      | 0           | 2.222            | 154.885                | 0       | 0          | 2.222            |
| 1965  | 114.882                  | 0       | 0         | 0      | 46.786             | 0      | 0           | 979              | 161.668                | 0       | 0          | 979              |
| 1966  | 127.865                  | 0       | 0         | 0      | 58.673             | 0      | 0           | 859              | 186,538                | 0       | 0          | 859              |
| 1967  | 139.211                  | 0       | 0         | 0      | 54.656             | 0      | 0           | 648              | 193.867                | 0       | 0          | 648              |
| 1968  | 164.341                  | 0       | 0         | 0      | 65.893             | 0      | 0           | 921              | 230.234                | 0       | 0          | 921              |
| 1969  | 241.542                  | 0       | 0         | 0      | 61.977             | 0      | 0           | 914              | 303.519                | 0       | 0          | 914              |
|       |                          |         |           |        |                    |        |             |                  |                        |         |            |                  |
| 1970  | 308.024                  | 0       | 0         | 0      | 65.801             | 0      | 0           | 589              | 373.825                | 0       | 0          | 589              |
| 1971  | 395.266                  | 0       | 0         | 0      | 71.874             | 0      | 0           | 504              | 467.140                | 0       | 0          | 504              |
| 1972  | 457.124                  | 0       | 0         | 0      | 89.143             | 0      | 0           | 589              | 546.267                | 0       | 0          | 589              |
| 1973  | 557.692                  | 0       | 0         | 0      | 105.745            | 0      | 0           | 573              | 663.437                | 0       | 0          | 573              |
| 1974  | 639.668                  | 0       | 0         | 0      | 116.280            | 0      | 0           | 545              | 755.948                | 0       | 0          | 545              |
| 1975  | 661.332                  | 0       | 0         | 0      | 117.588            | 0      | 0           | 726              | 778.920                | 0       | 0          | 726              |
| 1976  | 695.207                  | 0       | 0         | 0      | 113.522            | 0      | 0           | 1.449            | 808.729                | 0       | 0          | 1.449            |
| 1977  | 678.824                  | 0       | 0         | 0      | 69.247             | 0      | 0           | 2.614            | 748.071                | 0       | 0          | 2.614            |
| 1978  | 797.942                  | 0       | 0         | 0      | 79.353             | 0      | 0           | 4.315            | 877.295                | 0       | 0          | 4.315            |
| 1979  | 826.462                  | 2.271   | 0         | 0      | 79.244             | 843    | 0           | 15.870           | 905.706                | 3.114   | 0          | 15.870           |
| 1980  | 566.676                  | 226.352 | 0         | 0      | 59.791             | 14.291 | 0           | 19.686           | 626.467                | 240.643 | 0          | 19.686           |
| 1981  | 318.929                  | 128.679 | 0         | 0      | 25.538             | 7.563  | 0           | 34.899           | 344.467                | 136.242 | 0          | 34.899           |
| 1982  | 344.468                  | 211.761 | 0         | 0      | 20.966             | 20.814 | 0           | 43.983           | 365.434                | 232.575 | 0          | 43.983           |
| 1983  | 70.098                   | 538.401 | 0         | 0      | 8.520              | 40.927 | 0           | 28.638           | 78.618                 | 579.328 | 0          | 28.638           |
| 1984  | 28.670                   | 503.565 | 0         | 0      | 4.812              | 61.971 | 0           | 29.183           | 33.482                 | 565.536 | 0          | 29.183           |
| 1985  | 23.892                   | 578.177 | 0         | 0      | 4.763              | 67.374 | 0           | 26.169           | 28.655                 | 645.551 | 0          | 26.169           |
| 1986  | 53.094                   | 619.290 | 0         | 0      | 8.822              | 77.759 | 0           | 27.421           | 61.916                 | 697.049 | 0          | 27.421           |
| 1987  | 23.084                   | 387.176 | 0         | 0      | 8.106              | 71.507 | 0           | 23.759           | 31.190                 | 458.683 | 0          | 23.759           |
| 1988  | 64.734                   | 492.010 | 0         | 0      | 12.578             | 74.472 | 0           | 36.042           | 77.312                 | 566.482 | 0          | 36.042           |
| 1989  | 220.984                  | 345.598 | 0         | 0      | 39.837             | 53.931 | 0           | 43.612           | 260.821                | 399.529 | 0          | 43.612           |
| 1990  | 462.585                  | 70.250  | 0         | 71     | 80.270             | 11.746 | 0           | 36.415           | 542.855                | 81.996  | 0          | 36.486           |
| 1991  | 468.462                  | 129.139 | 0         | 291    | 77.796             | 21.843 | 0           | 34.913           | 546.258                | 150.982 | 0          | 35.204           |
| 1992  | 431.635                  | 164.840 | 0         | 489    | 67.292             | 30.663 | 0           | 29.732           | 498.927                | 195.503 | 0          | 30.221           |
| 1993  | 675.403                  | 227.289 | 0         | 1.136  | 89.195             | 36.946 | 0           | 51.417           | 764.598                | 264.235 | 0          | 52.553           |
| 1994  | 1.007.462                | 119.203 | 0         | 1.008  | 120.023            | 22.631 | 0           | 60.132           | 1.127.485              | 141.834 | 0          | 61.140           |
| 1995  |                          | 32.808  | 0         | 0      |                    | 7.898  |             |                  |                        | 40.706  | 0          |                  |
| 1995  | 1.374.265<br>1.399.212   | 6.333   | 0         | 0      | 183.409<br>222.756 | 1.314  | 0           | 53.898<br>43.521 | 1.557.674<br>1.621.968 | 7.647   | 0          | 53.898<br>43.521 |
|       |                          |         |           |        |                    |        |             |                  |                        |         |            |                  |
| 1997  | 1.568.803                | 924     | 0         | 0      | 232.885            | 196    | 0           | 70.857           | 1.801.688              | 1.120   | 0          | 70.857           |
| 1998  | 1.210.904                | 981     | 0         | 0      | 177.830            | 243    | 0           | 76.465           | 1.388.734              | 1.224   | 0          | 76.465           |
| 1999  | 1.001.996                | 9.851   | 0         | 0      | 120.233            | 1.096  | 0           | 62.433           | 1.122.229              | 10.947  | 0          | 62.433           |
| 2000  | 1.167.164                | 9.610   | 0         | 0      | 143.315            | 682    | 0           | 83.062           | 1.310.479              | 10.292  | 0          | 83.062           |
| 2001  | 1.280.117                | 14.979  | 0         | 0      | 132.303            | 3.356  | 0           | 80.432           | 1.412.420              | 18.335  | 0          | 80.432           |
| 2002  | 1.181.780                | 47.366  | 0         | 0      | 102.183            | 8.595  | 0           | 64.341           | 1.283.963              | 55.961  | 0          | 64.341           |
| 2003  | 1.046.474                | 33.034  | 39.095    | 0      | 105.989            | 3.346  | 9.083       | 54.729           | 1.152.463              | 36.380  | 48.178     | 54.729           |
| 2004  | 967.235                  | 49.801  | 278.764   | 0      | 110.710            | 1.149  | 49.615      | 66.247           | 1.077.945              | 50.950  | 328.379    | 66.247           |
| 2005  | 609.903                  | 30.904  | 728.375   | 0      | 87.130             | 1.453  | 83.729      | 77.453           | 697.033                | 32.357  | 812.104    | 77.453           |
| 2006  | 260.824                  | 1.650   | 1.293.746 | 0      | 55.737             | 213    | 136.588     | 82.954           | 316.561                | 1.863   | 1.430.334  | 82.954           |
| 2007  | 186.554                  | 88      | 1.788.876 | 0      | 59.106             | 19     | 214.214     | 92.175           | 245.660                | 107     | 2.003.090  | 92.175           |
| 2008  | 127.896                  | 68      | 2.065.313 | 0      | 89.125             | 16     | 263.934     | 124.639          | 217.021                | 84      | 2.329.247  | 124.639          |
| 2009  | 113.283                  | 58      | 2.361.423 | 0      | 108.449            | 12     | 290.875     | 134.642          | 221.732                | 70      | 2.652.298  | 134.642          |
| 2010  | 132.114                  | 44      | 2.512.546 | 0      | 148.610            | 6      | 363.627     | 172.001          | 280.724                | 50      | 2.876.173  | 172.001          |
|       |                          |         |           |        |                    |        |             |                  |                        |         |            |                  |



Tabela 26: Licenciamento de caminhões e ônibus novos por combustível – 1957/2010 no Brasil.

|      | CAM      | IINHÕES |         | ÔNIBUS   |        |        |  |
|------|----------|---------|---------|----------|--------|--------|--|
| ANO  | Gasolina | Etanol  | Diesel  | Gasolina | Etanol | Diesel |  |
| 1957 | 9.957    | 0       | 8.106   | 0        | 0      | 1.904  |  |
| 1958 | 16.071   | 0       | 11.313  | 0        | 0      | 3.333  |  |
| 1959 | 27.111   | 0       | 10.100  | 329      | 0      | 2.830  |  |
| 1960 | 28.311   | 0       | 9.742   | 527      | 0      | 3.422  |  |
| 1961 | 20.575   | 0       | 5.714   | 200      | 0      | 2.850  |  |
| 1962 | 28.791   | 0       | 7.403   | 156      | 0      | 3.193  |  |
| 1963 | 15.559   | 0       | 5.977   | 121      | 0      | 2.299  |  |
| 1964 | 15.692   | 0       | 5.482   | 71       | 0      | 2.553  |  |
| 1965 | 15.692   | 0       | 6.759   | 29       | 0      | 2.927  |  |
| 1966 | 20.213   | 0       | 10.334  | 23       | 0      | 3.609  |  |
| 1967 | 17.602   | 0       | 10.007  | 23       | 0      | 4.765  |  |
| 1968 | 25.400   | 0       | 15.058  | 7        | 0      | 6.995  |  |
| 1969 | 22.558   | 0       | 16.875  | 6        | 0      | 5.621  |  |
| 1970 | 17.067   | 0       | 21.100  | 23       | 0      | 4.100  |  |
| 1971 | 15.872   | 0       | 21.771  | 32       | 0      | 4.304  |  |
| 1972 | 19.901   | 0       | 30.441  | 17       | 0      | 4.205  |  |
| 1973 | 25.888   | 0       | 38.930  | 67       | 0      | 6.333  |  |
| 1974 | 29.385   | 0       | 42.048  | 97       | 0      | 7.070  |  |
| 1975 | 16.350   | 0       | 53.551  | 151      | 0      | 8.780  |  |
| 1976 | 8.209    | 0       | 66.762  | 14       | 0      | 10.972 |  |
| 1977 | 1.874    | 0       | 88.373  | 26       | 0      | 12.012 |  |
| 1978 | 519      | 0       | 78.372  | 2        | 0      | 11.859 |  |
| 1979 | 1.174    | 6       | 77.526  | 5        | 0      | 11.524 |  |
| 1980 | 583      | 0       | 81.350  | 0        | 0      | 11.532 |  |
| 1981 | 61       | 1.058   | 54.819  | 1        | 7      | 9.171  |  |
| 1982 | 121      | 919     | 40.217  | 0        | 3      | 8.042  |  |
| 1983 | 206      | 2.045   | 32.322  | 0        | 0      | 6.575  |  |
| 1984 | 82       | 2.613   | 40.189  | 0        | 14     | 5.983  |  |
| 1985 | 22       | 1.894   | 53.748  | 0        | 0      | 7.141  |  |
| 1986 | 104      | 1.514   | 70.236  | 0        | 0      | 8.488  |  |
| 1987 | 51       | 539     | 55.795  | 0        | 0      | 10.068 |  |
| 1988 | 15       | 128     | 54.769  | 0        | 0      | 12.968 |  |
| 1989 | 60       | 49      | 48.069  | 0        | 0      | 9.485  |  |
| 1990 | 122      | 5       | 41.186  | 0        | 0      | 10.091 |  |
| 1991 | 123      | 3       | 41.338  | 0        | 0      | 16.865 |  |
| 1992 | 58       | 7       | 25.594  | 0        | 0      | 13.706 |  |
| 1993 | 66       | 0       | 38.317  | 0        | 0      | 11.396 |  |
| 1994 | 22       | 1       | 52.326  | 0        | 0      | 12.595 |  |
| 1995 | 8        | 1       | 58.725  | 0        | 0      | 17.368 |  |
| 1996 | 0        | 0       | 42.134  | 0        | 0      | 15.518 |  |
| 1997 | 0        | 0       | 54.931  | 0        | 0      | 14.862 |  |
| 1998 | 0        | 0       | 52.768  | 0        | 0      | 15.761 |  |
| 1999 | 0        | 0       | 50.665  | 0        | 0      | 10.679 |  |
| 2000 | 117      | 0       | 69.092  | 0        | 0      | 16.439 |  |
| 2001 | 0        | 0       | 73.517  | 0        | 0      | 16.578 |  |
| 2002 | 0        | 0       | 66.484  | 0        | 0      | 16.790 |  |
| 2003 | 0        | 0       | 68.121  | 0        | 0      | 17.413 |  |
| 2004 | 0        | 0       | 85.729  | 0        | 0      | 16.982 |  |
| 2005 | 0        | 0       | 80.334  | 0        | 0      | 15.363 |  |
| 2006 | 0        | 0       | 76.258  | 0        | 0      | 19.768 |  |
| 2007 | 0        | 0       | 98.498  | 0        | 0      | 23.198 |  |
| 2008 | 0        | 0       | 122.349 | 0        | 0      | 27.010 |  |
| 2009 | 0        | 0       | 109.873 | 0        | 0      | 22.625 |  |
| 2010 | 0        | 0       | 157.694 | 0        | 0      | 28.422 |  |
| 2010 | · ·      | 0       | 157.07  | U        | U      | 25.722 |  |



Tabela 27: Percentual de vendas de veículo no Rio de Janeiro em relação ao Brasil.

| ANO  | AUTOMOVEIS | COMERCIAIS<br>LEVES | CAMINHÕES | ÔNIBUS |
|------|------------|---------------------|-----------|--------|
| 1985 | 11,89%     | 6,25%               | 7,16%     | 14,89% |
| 1986 | 11,46%     | 6,77%               | 6,89%     | 11,35% |
| 1987 | 12,18%     | 7,41%               | 7,56%     | 13,19% |
| 1988 | 12,62%     | 7,45%               | 7,83%     | 20,56% |
| 1989 | 12,19%     | 7,36%               | 6,61%     | 25,55% |
| 1990 | 11,92%     | 7,75%               | 6,32%     | 21,84% |
| 1991 | -          | -                   | -         | -      |
| 1992 | -          | -                   | -         | -      |
| 1993 | 10,65%     | 7,68%               | 5,70%     | 24,59% |
| 1994 | 10,51%     | 8,03%               | 5,62%     | 27,13% |
| 1995 | 10,93%     | 8,12%               | 7,46%     | 23,11% |
| 1996 | 10,85%     | 9,93%               | 8,28%     | 19,40% |
| 1997 | 10,09%     | 9,32%               | 6,18%     | 25,50% |
| 1998 | 10,71%     | 8,44%               | 5,70%     | 22,35% |
| 1999 | 10,85%     | 7,97%               | 4,69%     | 13,77% |
| 2000 | 10,76%     | 8,07%               | 4,64%     | 16,61% |
| 2001 | 10,21%     | 8,51%               | 5,74%     | 13,02% |
| 2002 | 10,08%     | 8,15%               | 5,73%     | 15,60% |
| 2003 | 8,86%      | 7,09%               | 5,35%     | 13,40% |
| 2004 | 8,13%      | 6,79%               | 4,60%     | 15,17% |
| 2005 | 8,01%      | 6,70%               | 4,70%     | 16,27% |
| 2006 | 7,74%      | 6,27%               | 5,23%     | 15,98% |
| 2007 | 7,63%      | 6,29%               | 4,76%     | 17,00% |
| 2008 | 7,35%      | 6,03%               | 5,11%     | 16,30% |
| 2009 | 7,48%      | 6,25%               | 5,07%     | 16,02% |
| 2010 | 7,56%      | 6,41%               | 4,95%     | 16,15% |



Tabela 28: Licenciamento estimado de automóveis e comerciais leves novos por combustível -1957/2010 no Rio de Janeiro.

|      |          | AUTOM  | ÓVEIS     |        |          | COMERCIA | AIS LEVES |        |
|------|----------|--------|-----------|--------|----------|----------|-----------|--------|
| ANO  | Gasolina | Etanol | Flex fuel | Diesel | Gasolina | Etanol   | Flex fuel | Diesel |
| 1957 | 139      | 0      | 0         | 0      | 615      | 0        | 0         | 0      |
| 1958 | 438      | 0      | 0         | 0      | 1658     | 0        | 0         | 0      |
| 1959 | 1708     | 0      | 0         | 0      | 2595     | 0        | 0         | 29     |
| 1960 | 4871     | 0      | 0         | 0      | 3013     | 0        | 0         | 19     |
| 1961 | 7147     | 0      | 0         | 0      | 3458     | 0        | 0         | 0      |
| 1962 | 9930     | 0      | 0         | 0      | 4158     | 0        | 0         | 34     |
| 1963 | 11246    | 0      | 0         | 0      | 3356     | 0        | 0         | 93     |
| 1964 | 12293    | 0      | 0         | 0      | 3216     | 0        | 0         | 139    |
| 1965 | 13655    | 0      | 0         | 0      | 2924     | 0        | 0         | 61     |
| 1966 | 15198    | 0      | 0         | 0      | 3667     | 0        | 0         | 54     |
| 1967 | 16546    | 0      | 0         | 0      | 3416     | 0        | 0         | 40     |
| 1968 | 19533    | 0      | 0         | 0      | 4118     | 0        | 0         | 58     |
| 1969 | 28709    | 0      | 0         | 0      | 3873     | 0        | 0         | 57     |
| 1970 | 36611    | 0      | 0         | 0      | 4112     | 0        | 0         | 37     |
| 1971 | 46981    | 0      | 0         | 0      | 4492     | 0        | 0         | 31     |
| 1972 | 54333    | 0      | 0         | 0      | 5571     | 0        | 0         | 37     |
| 1973 | 66286    | 0      | 0         | 0      | 6609     | 0        | 0         | 36     |
| 1974 | 76030    | 0      | 0         | 0      | 7267     | 0        | 0         | 34     |
| 1975 | 78605    | 0      | 0         | 0      | 7349     | 0        | 0         | 45     |
| 1976 | 82631    | 0      | 0         | 0      | 7095     | 0        | 0         | 91     |
| 1977 | 80684    | 0      | 0         | 0      | 4328     | 0        | 0         | 163    |
| 1978 | 94842    | 0      | 0         | 0      | 4959     | 0        | 0         | 270    |
| 1979 | 98232    | 270    | 0         | 0      | 4953     | 53       | 0         | 992    |
| 1980 | 67354    | 26904  | 0         | 0      | 3737     | 893      | 0         | 1230   |
| 1981 | 37907    | 15295  | 0         | 0      | 1596     | 473      | 0         | 2181   |
| 1982 | 40943    | 25170  | 0         | 0      | 1310     | 1301     | 0         | 2749   |
| 1983 | 8332     | 63994  | 0         | 0      | 532      | 2558     | 0         | 1790   |
| 1984 | 3408     | 59853  | 0         | 0      | 301      | 3873     | 0         | 1824   |
| 1985 | 2840     | 68721  | 0         | 0      | 298      | 4211     | 0         | 1636   |
| 1986 | 6084     | 70965  | 0         | 0      | 597      | 5264     | 0         | 1856   |
| 1987 | 2811     | 47144  | 0         | 0      | 601      | 5300     | 0         | 1761   |
| 1988 | 8171     | 62100  | 0         | 0      | 937      | 5546     | 0         | 2684   |
| 1989 | 26933    | 42121  | 0         | 0      | 2931     | 3967     | 0         | 3208   |
| 1990 | 55140    | 8374   | 0         | 8      | 6217     | 910      | 0         | 2820   |
| 1991 | 53852    | 14845  | 0         | 33     | 6009     | 1687     | 0         | 2697   |
| 1992 | 45954    | 17550  | 0         | 52     | 5169     | 2355     | 0         | 2284   |
| 1993 | 71907    | 24198  | 0         | 121    | 6851     | 2838     | 0         | 3949   |
| 1994 | 105873   | 12527  | 0         | 106    | 9643     | 1818     | 0         | 4831   |
| 1995 | 150168   | 3585   | 0         | 0      | 14897    | 641      | 0         | 4378   |
| 1996 | 151761   | 687    | 0         | 0      | 22111    | 130      | 0         | 4320   |
| 1997 | 158274   | 93     | 0         | 0      | 21700    | 18       | 0         | 6602   |
| 1998 | 129671   | 105    | 0         | 0      | 15003    | 21       | 0         | 6451   |
| 1999 | 108681   | 1068   | 0         | 0      | 9581     | 87       | 0         | 4975   |
| 2000 | 125641   | 1034   | 0         | 0      | 11561    | 55       | 0         | 6700   |
| 2001 | 130713   | 1530   | 0         | 0      | 11265    | 286      | 0         | 6848   |
| 2002 | 119124   | 4775   | 0         | 0      | 8331     | 701      | 0         | 5246   |
| 2003 | 92692    | 2926   | 3463      | 0      | 7517     | 237      | 644       | 3882   |
| 2004 | 78593    | 4047   | 22651     | 0      | 7516     | 78       | 3368      | 4497   |
| 2005 | 48838    | 2475   | 58325     | 0      | 5835     | 97       | 5607      | 5187   |
| 2006 | 20190    | 128    | 100146    | 0      | 3492     | 13       | 8558      | 5197   |
| 2007 | 14238    | 7      | 136530    | 0      | 3719     | 1        | 13478     | 5799   |
| 2008 | 9403     | 5      | 151850    | 0      | 5375     | 1        | 15917     | 7516   |
| 2009 | 8476     | 4      | 176676    | 0      | 6782     | 1        | 18191     | 8420   |
| 2010 | 9983     | 3      | 189858    | 0      | 9528     | 0        | 23313     | 11028  |



Tabela 29: Licenciamento estimado caminhões e ônibus novos por combustível – 1957/2010 no Rio de Janeiro.

|      | CA       | MINHÕES |        |          | ÔNIBUS |        |
|------|----------|---------|--------|----------|--------|--------|
| ANO  | Gasolina | Etanol  | Diesel | Gasolina | Etanol | Diesel |
| 1957 | 713      | 0       | 581    | 0        | 0      | 283    |
| 1958 | 1846     | 0       | 810    | 0        | 0      | 496    |
| 1959 | 3739     | 0       | 723    | 49       | 0      | 421    |
| 1960 | 5667     | 0       | 698    | 78       | 0      | 509    |
| 1961 | 6988     | 0       | 409    | 30       | 0      | 424    |
| 1962 | 8858     | 0       | 530    | 23       | 0      | 475    |
| 1963 | 9725     | 0       | 428    | 18       | 0      | 342    |
| 1964 | 10571    | 0       | 393    | 11       | 0      | 380    |
| 1965 | 11387    | 0       | 484    | 4        | 0      | 436    |
| 1966 | 12494    | 0       | 740    | 3        | 0      | 537    |
| 1967 | 13374    | 0       | 717    | 3        | 0      | 709    |
| 1968 | 14776    | 0       | 1079   | 1        | 0      | 1041   |
| 1969 | 15924    | 0       | 1209   | 1        | 0      | 837    |
| 1970 | 16633    | 0       | 1511   | 3        | 0      | 610    |
| 1971 | 17221    | 0       | 1559   | 5        | 0      | 641    |
| 1972 | 18064    | 0       | 2180   | 3        | 0      | 626    |
| 1973 | 19295    | 0       | 2788   | 10       | 0      | 943    |
| 1974 | 20725    | 0       | 3012   | 14       | 0      | 1052   |
| 1975 | 21164    | 0       | 3836   | 22       | 0      | 1307   |
| 1976 | 20986    | 0       | 4782   | 2        | 0      | 1633   |
| 1977 | 20338    | 0       | 6330   | 4        | 0      | 1788   |
| 1978 | 19589    | 0       | 5613   | 0        | 0      | 1765   |
| 1978 | 18887    | 0       | 5553   | 1        | 0      | 1705   |
| 1979 | 18141    |         | 5827   |          |        | 1713   |
| 1980 |          | 0<br>76 |        | 0        | 0      |        |
|      | 17360    |         | 3926   | 0        | 1      | 1365   |
| 1982 | 16588    | 66      | 2881   | 0        | 0      | 1197   |
| 1983 | 15828    | 146     | 2315   | 0        | 0      | 979    |
| 1984 | 15068    | 187     | 2879   | 0        | 2      | 891    |
| 1985 | 14313    | 136     | 3850   | 0        | 0      | 1063   |
| 1986 | 13575    | 104     | 4839   | 0        | 0      | 963    |
| 1987 | 12848    | 41      | 4217   | 0        | 0      | 1328   |
| 1988 | 12134    | 10      | 4290   | 0        | 0      | 2666   |
| 1989 | 11441    | 3       | 3176   | 0        | 0      | 2423   |
| 1990 | 10770    | 0       | 2605   | 0        | 0      | 2204   |
| 1991 | 10120    | 0       | 2528   | 0        | 0      | 3838   |
| 1992 | 9487     | 0       | 1459   | 0        | 0      | 3371   |
| 1993 | 8879     | 0       | 2184   | 0        | 0      | 2802   |
| 1994 | 8291     | 0       | 2942   | 0        | 0      | 3417   |
| 1995 | 7728     | 0       | 4384   | 0        | 0      | 4013   |
| 1996 | 7191     | 0       | 3489   | 0        | 0      | 3010   |
| 1997 | 6679     | 0       | 3396   | 0        | 0      | 3790   |
| 1998 | 6193     | 0       | 3005   | 0        | 0      | 3522   |
| 1999 | 5734     | 0       | 2378   | 0        | 0      | 1470   |
| 2000 | 5306     | 0       | 3206   | 0        | 0      | 2730   |
| 2001 | 4898     | 0       | 4223   | 0        | 0      | 2158   |
| 2002 | 4515     | 0       | 3812   | 0        | 0      | 2620   |
| 2003 | 4157     | 0       | 3642   | 0        | 0      | 2334   |
| 2004 | 3822     | 0       | 3940   | 0        | 0      | 2575   |
| 2005 | 3510     | 0       | 3772   | 0        | 0      | 2500   |
| 2006 | 3220     | 0       | 3985   | 0        | 0      | 3159   |
| 2007 | 2951     | 0       | 4688   | 0        | 0      | 3943   |
| 2008 | 2702     | 0       | 6257   | 0        | 0      | 4403   |
| 2009 | 2471     | 0       | 5576   | 0        | 0      | 3625   |
| 2010 | 2258     | 0       | 7807   | 0        | 0      | 4589   |



## ANEXO III – ESTIMATIVA DE LICENCIAMENTO DE MOTOCICLETAS NOVAS NO RIO DE JANEIRO POR MEIO DOS DADOS DA ABRACICLO

Para se realizar a estimativa de licenciamento de motocicletas novas no Rio de Janeiro, baseado nas vendas, foram utilizados os dados disponibilizados pela ABRACICLO. A tabela 30 apresenta os dados de produção, vendas internas e exportação de motocicletas no Brasil e vendas para o estado do Rio de Janeiro. Nos dados disponibilizados pela ABRACICLO, tem-se os dados de produção e venda de motocicletas novas desde o ano de 1975 a 2010 para o Brasil. Estes dados estão apresentados na tabela 30. Para os anos anteriores a 1985, não foram disponibilizados os dados de venda para o mercado interno e exportação, adotando-se no presente estudo a produção como o valor estimado para venda no mercado interno no Brasil.

Tabela 30: Produção e vendas de motocicletas no Brasil de acordo com os dados disponibilizados na ABRACICLO e vendas estimadas no estado do Rio de Janeiro.

|      | Propygia  |                         | AS TOTAIS  |           | VENDAS         |
|------|-----------|-------------------------|------------|-----------|----------------|
| ANO  | PRODUÇÃO  | Mercado interno atacado | Exportação | Total     | Rio de Janeiro |
| 1975 | 5.220     |                         |            |           | 234            |
| 1976 | 12.800    |                         |            |           | 575            |
| 1977 | 32.791    |                         |            |           | 1473           |
| 1978 | 41.492    |                         |            |           | 1.863          |
| 1979 | 63.636    |                         |            |           | 2.858          |
| 1980 | 125.000   |                         |            |           | 5.614          |
| 1981 | 155.572   |                         |            |           | 6.987          |
| 1982 | 215.767   |                         |            |           | 9.690          |
| 1983 | 219.000   |                         |            |           | 9.835          |
| 1984 | 180.000   |                         |            |           | 8.084          |
| 1985 | 161.378   |                         |            |           | 7.247          |
| 1986 | 166.994   | 166.160                 |            | 166.160   | 7.462          |
| 1987 | 181.500   | 175.613                 |            | 175.613   | 7.887          |
| 1988 | 166.961   | 158.671                 | 10.117     | 168.788   | 7.126          |
| 1989 | 167.431   | 153.617                 | 12.327     | 165.944   | 6.899          |
| 1990 | 146.735   | 123.169                 | 15.460     | 138.629   | 5.531          |
| 1991 | 116.321   | 109.168                 | 13.191     | 122.359   | 4.903          |
| 1992 | 86.194    | 53.450                  | 35.596     | 89.046    | 2.400          |
| 1993 | 83.458    | 67.997                  | 15.805     | 83.802    | 3.054          |
| 1994 | 141.140   | 127.395                 | 14.334     | 141.729   | 5.721          |
| 1995 | 217.327   | 200.592                 | 12.930     | 213.522   | 9.008          |
| 1996 | 288.073   | 275.668                 | 14.913     | 290.581   | 12.380         |
| 1997 | 426.547   | 407.430                 | 16.415     | 423.845   | 18.297         |
| 1998 | 475.725   | 460.122                 | 20.374     | 480.496   | 20.664         |
| 1999 | 473.802   | 441.536                 | 32.607     | 474.143   | 19.829         |
| 2000 | 634.984   | 574.149                 | 60.260     | 634.409   | 28.133         |
| 2001 | 753.159   | 692.096                 | 60.190     | 752.286   | 35.297         |
| 2002 | 861.469   | 792.429                 | 68.050     | 860.479   | 40.414         |
| 2003 | 954.620   | 848.377                 | 100.440    | 948.817   | 36.480         |
| 2004 | 1.057.333 | 911.717                 | 157.400    | 1.069.117 | 41.027         |
| 2005 | 1.213.517 | 1.024.203               | 184.592    | 1.208.795 | 40.968         |
| 2006 | 1.413.062 | 1.268.041               | 163.379    | 1.431.420 | 51.990         |
| 2007 | 1.734.349 | 1.600.157               | 139.880    | 1.740.037 | 75.207         |
| 2008 | 2.140.907 | 1.879.695               | 131.720    | 2.011.415 | 84.586         |
| 2009 | 1.539.473 | 1.579.197               | 60.516     | 1.639.713 | 63.168         |
| 2010 | 1.830.614 | 1.818.181               | 69.209     | 1.887.390 | 76.364         |



A produção para alguns anos é inferior ao total de vendas. Esta diferença pode ter ocorrido devido à existência de estoque de um ano para outro.

A tabela 31 apresenta o percentual de vendas de motocicletas no estado do Rio de Janeiro em relação ao Brasil disponibilizados pela ABRACICLO. Os percentuais estão disponibilizados apenas para o período de 2000 a 2010. Desse modo, utilizou-se a média de tal período como valor estimado para o percentual de vendas no Rio de Janeiro para os anos anteriores a 2000. Esses percentuais foram utilizados para calcular os valores de vendas no estado do Rio de Janeiro apresentados na Tabela 30.

Da análise da figura 46, verifica-se que o percentual de vendas no estado do Rio de Janeiro oscila entre 5,1% e 4%. Os dados não apresentam características de tendência de crescimento ou decrescimento, por isso, a média foi adotada como valor estimado para o percentual para os anos anteriores a 2000.

Tabela 31: Percentual de vendas de motocicletas no estado do Rio de Janeiro em relação ao Brasil.

|                    | 2010300 00 210011             |
|--------------------|-------------------------------|
| ANO                | % DE VENDAS NO RIO DE JANEIRO |
| Anterior a<br>2000 | 4,5%                          |
| 2000               | 4,9%                          |
| 2001               | 5,1%                          |
| 2002               | 5,1%                          |
| 2003               | 4,3%                          |
| 2004               | 4,5%                          |
| 2005               | 4%                            |
| 2006               | 4,1%                          |
| 2007               | 4,7%                          |
| 2008               | 4,5%                          |
| 2009               | 4%                            |
| 2010               | 4,2%                          |



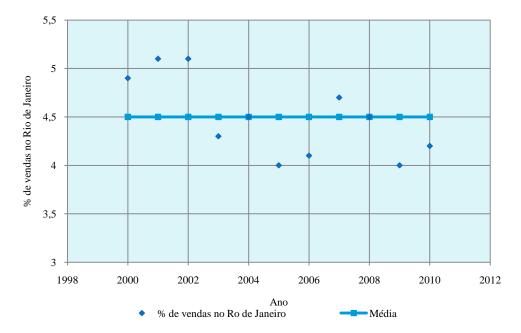



Figura 46: Variação do percentual de vendas no estado do Rio de Janeiro do ano 2000 a 2010.



## ANEXO IV – VERIFICAÇÃO DOS AJUSTES E REPRESENTATIVIDADE DAS FROTAS.

Com intuito de avaliar o comportamento dos dados de primeiro licenciamento fornecidos pelo DETRAN-RJ em relação aos dados de vendas de veículos no estado do Rio de Janeiro estimados com base nos dados da ANFAVEA (2011) e ABRACICLO (2011), foi realizada uma comparação entre esses valores. Os resultados destas comparações podem ser observados nas Figuras 46. a 55 cujos parâmetros se encontram na tabela 32.

Pelas Figuras e tabelas apresentadas, verifica-se que os dados do DETRAN apresentaram uma alta correlação ( $R^2 > 0.7$ , com exceção dos ônibus, onde  $R^2 = 0.62$ ) com os dados estimados pelas vendas da ANFAVEA e ABRACICLO. Com isso, entende-se que os dados DETRAN-RJ representem não apenas as vendas de veículos para o Rio de Janeiro, mas também os veículos da frota do estado do Rio de Janeiro que foram vendidos em outros estados e transferidos para o Rio de Janeiro.

Em entrevista realizada com o Sr. Amauri Cavalcanti (Diretor de Informática do DETRAN-RJ) este nos informou que o banco de dados do DETRAN-RJ considera os veículos ativos, ou seja, aqueles que foram introduzidos por 1ª licença ou transferência de outros estados menos os que foram retirados por baixa ou transferência para outros estados. Porém, baixas e transferências são raras e a frota cadastrada no DETRAN-RJ, se considerada por ano de 1ª licença, poderia representar um melhor aproximação da entrada de veículos na frota do estado do Rio de Janeiro. Logo, decidiu-se utilizar os dados do DETRAN como uma estimativa para o licenciamento anual de veículos novos. Por ser uma estimativa, existe um grau de incerteza no valor utilizado para o licenciamento anual de veículos novos no estado do Rio de Janeiro, devendo-se analisar com cautela o seu reflexo nos resultados finais.

A equação 1 apresenta a fórmula do desvio percentual utilizado para comparar os dados do DETRAN-RJ com os da ANFAVEA o ABRACICLO.

$$\delta_{\%}^{j} = \frac{\sum_{t=t_0}^{2010} \frac{D_{detran}^{t,j} - D_{PV}^{t,j}}{D_{PV}^{t,j}}}{n}$$
(AIV.1)

Onde:  $\delta_{\%}$ : Desvio percentual médio;

 $D_{detran}^{t,j}$ : Dados cadastrados no DETRAN-RJ para o veículo j<br/> no ano t;  $D_{PV}^{t,j}$ : Vendas segundo os dados da ANFAVEA ou ABRACICLO no ano t<br/> para o veículo

n: quantidade de anos utilizados no cálculo no desvio percentual.

A tabela 32 apresenta um resumo dos resultados das análises estatísticas realizadas para a comparação entre os dados da ANFAVEA e ABRACICLO com o banco de dados do DETRAN-RJ. As diferenças observadas entre as estimativas com os dados da



ANFAVEA e da ABRACICLO ajudam a avaliar o grau de incerteza no dado de 1º licenciamento dos veículos. As diferenças podem ter ocorrido também devido as considerações realizadas para estimar as vendas no estado do Rio de Janeiro para cada veículo.

Tabela 32: Resumo das comparações realizadas.

| Veículos                | $\mathbf{t_0}$ | $oldsymbol{\delta}_{\%}$ | $\mathbb{R}^2$ |
|-------------------------|----------------|--------------------------|----------------|
| Automóveis gasolina     | 1957           | -2,09%                   | 0,950          |
| Automóveis etanol       | 1979           | -31,27%                  | 0,968          |
| Automóveis flex         | 2003           | 0,45%                    | 0,997          |
| Comercial leve gasolina | 1957           | 4,73%                    | 0,784          |
| Comercial leve etanol   | 1979           | -51,88%                  | 0,985          |
| Comercial leve flex     | 2003           | -16,05%                  | 0,987          |
| Comercial leve diesel   | 1957           | 9,88%                    | 0,873          |
| Caminhão diesel         | 1957           | -57,95%                  | 0,873          |
| Ônibus diesel           | 1957           | -56,92%                  | 0,626          |
| Motocicletas            | 1975           | 8,97%                    | 0,809          |

## Automóveis gasolina

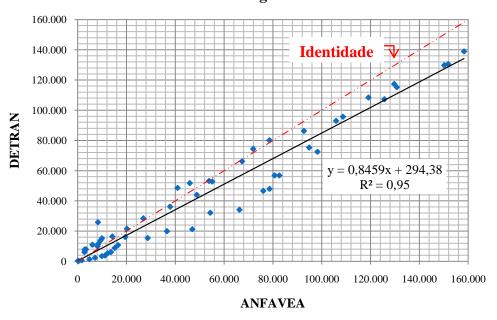



Figura 47: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para automóvel gasolina.



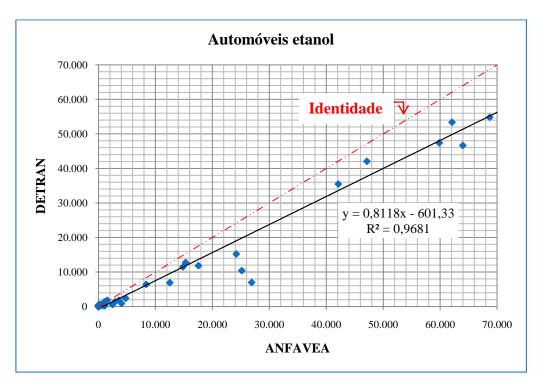



Figura 48: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para automóvel etanol.

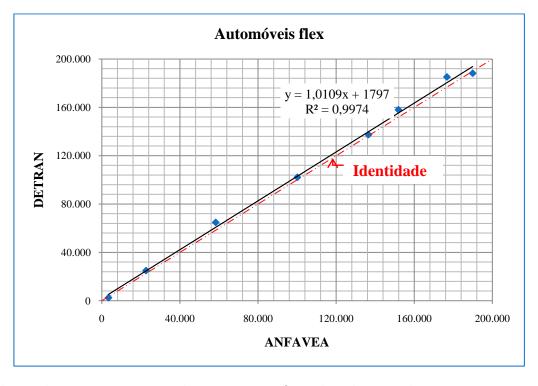



Figura 49: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para automóvel flex.



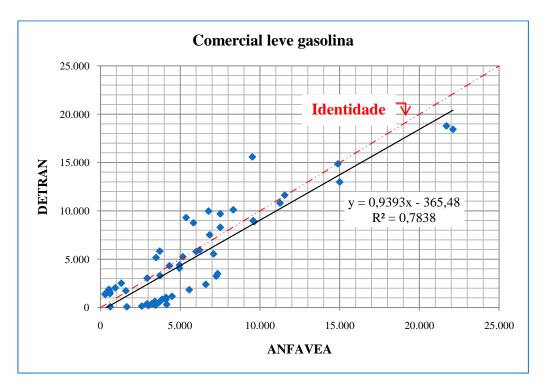



Figura 50: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para comercial leve gasolina.




Figura 51: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para comercial leve etanol.



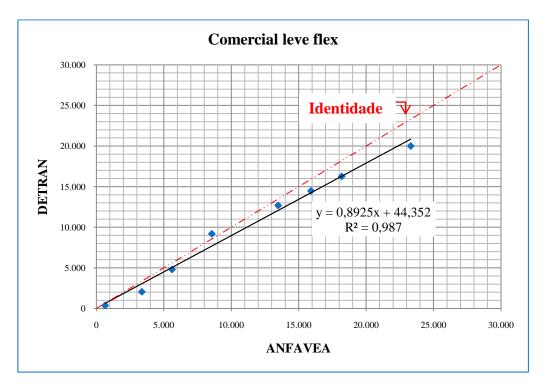



Figura 52: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para comercial leve flex.

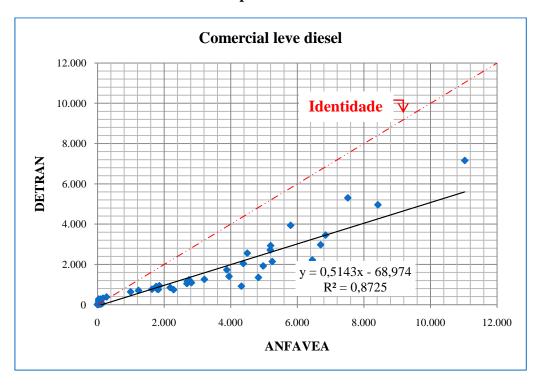



Figura 53: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para comercial leve diesel.



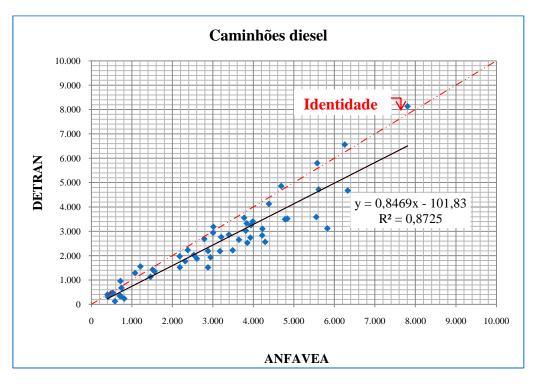



Figura 54: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para caminhão diesel.

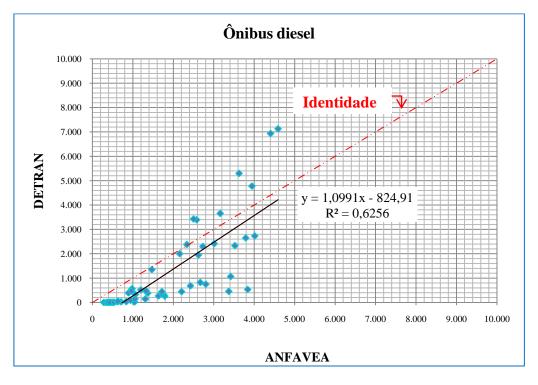



Figura 55: Dados do DETRAN em relação às estimativas realizadas com os dados da ANFAVEA para ônibus diesel.



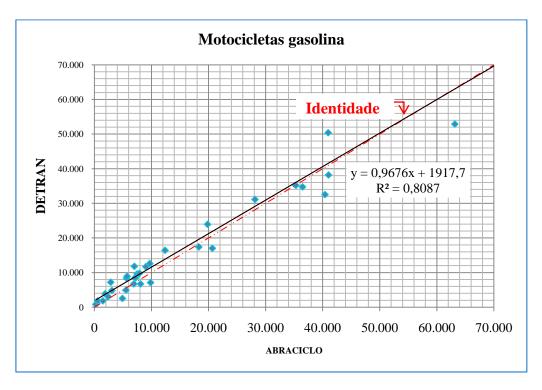



Figura 56: Dados do DETRAN em relação às estimativas realizadas com os dados da ABRACICLO para motocicletas a gasolina.



## ANEXO V - FROTA DE VEÍCULOS CONVERTIDOS A GNV.

Para avaliar a frota de veículos convertidos a GNV no estado do Rio de Janeiro, foi utilizado o banco de dados do DETRAN. A Tabela 33 apresenta os veículos e as combinações consideradas neste estudo.

Tabela 33: Veículos considerados na frota GNV.

| VEÍCULOS                  | CARACTERÍSTICAS NO BANCO DE DADOS DO DETRAN-RJ |                                   |  |  |  |
|---------------------------|------------------------------------------------|-----------------------------------|--|--|--|
| VEICULUS                  | TIPO                                           | COMBUSTÍVEL                       |  |  |  |
| Automóveis gasolina       | Automóvel.                                     | Gasolina + Gnv.                   |  |  |  |
| Automóveis etanol         | Automóvel.                                     | Etanol + Gnv.                     |  |  |  |
| Automóveis flex           | Automóvel.                                     | Etanol + gasolina $(flex)$ + Gnv. |  |  |  |
| Comerciais leves gasolina | Camioneta, caminhonete e utilitário.           | Gasolina + Gnv.                   |  |  |  |
| Comerciais leves etanol   | Camioneta, caminhonete e utilitário.           | Etanol + Gnv.                     |  |  |  |
| Comerciais leves flex     | Camioneta, caminhonete e utilitário.           | Etanol + gasolina $(flex)$ + Gnv. |  |  |  |

A tabela 34 mostra o total de veículos cadastrados no DETRAN nas condições da tabela 33, por tipo com ano de fabricação entre 1957 e 2010.

Tabela 34: Quantidade de veículos movidos a GNV cadastrados no DETRAN até agosto de 2011, com ano de fabricação entre 1957 e 2010.

| VEÍCULOS COM GNV |          |        |         |         |  |
|------------------|----------|--------|---------|---------|--|
|                  | GASOLINA | ETANOL | FLEX    | TOTAL   |  |
| Automóveis       | 507.407  | 43.007 | 128.533 | 678.947 |  |
| Comercial leve   | 102.142  | 4.682  | 20.632  | 127.456 |  |
| TOTAL            | 609.549  | 47.689 | 149.165 | 806.403 |  |

A tabela 35 apresenta o total de veículos por ano de fabricação cadastrados até agosto de 2011. A informação de quando os veículos fizeram a conversão para GNV não foi disponibilizada pelo DETRAN.



Tabela 35: Quantidade de veículos movidos a GNV cadastrados no DETRAN até agosto de 2011 por ano de fabricação.

| ANO                  |              | automóveis |                  | C            | omerciais leves |           |
|----------------------|--------------|------------|------------------|--------------|-----------------|-----------|
| ANO                  | GASOLINA     | ETANOL     | FLEX FUEL        | GASOLINA     | ETANOL          | FLEX FUEL |
| 1957                 | 10           |            |                  | 3            |                 |           |
| 1958                 | 4            |            |                  | 4            |                 |           |
| 1959                 | 7            |            |                  | 8            |                 |           |
| 1960                 | 17           |            |                  | 10           |                 |           |
| 1961                 | 26           |            |                  | 11           |                 |           |
| 1962                 | 25           |            |                  | 16           |                 |           |
| 1963                 | 35           |            |                  | 12           |                 |           |
| 1964                 | 46           |            |                  | 26           |                 |           |
| 1965                 | 37           |            |                  | 14           |                 |           |
| 1966                 | 69           |            |                  | 21           |                 |           |
| 1967                 | 96           |            |                  | 24           |                 |           |
| 1968                 | 146          |            |                  | 35           |                 |           |
| 1969                 | 142          |            |                  | 40           |                 |           |
| 1970                 | 215          | 0          |                  | 32           | 0               |           |
| 1971                 | 265          | 0          |                  | 51           | 1               |           |
| 1972                 | 487          | 1          |                  | 81           | 1               |           |
| 1973                 | 485          | 0          |                  | 129          | 3               |           |
| 1974                 | 585          | 0          |                  | 152          | 0               |           |
| 1975                 | 596          | 3          |                  | 177          | 0               |           |
| 1976                 | 720          | 2          |                  | 362          | 0               |           |
| 1977                 | 574          | 1          |                  | 288          | 9               |           |
| 1978                 | 734          | 6          |                  | 442          | 2               |           |
| 1979                 | 861          | 5          |                  | 449          | 4               |           |
| 1980                 | 1.029        | 54         |                  | 477          | 32              |           |
| 1981                 | 718          | 142        |                  | 263          | 32              |           |
| 1982                 | 1.542        | 113        |                  | 491          | 99              |           |
| 1983                 | 1.194        | 965        |                  | 461          | 142             |           |
| 1984                 | 533          | 1.597      |                  | 434          | 230             |           |
| 1985                 | 662          | 2.840      |                  | 453          | 365             |           |
| 1986                 | 1.272        | 4.260      |                  | 545          | 465             |           |
| 1987                 | 1.034        | 3.665      |                  | 517          | 467             |           |
| 1988                 | 2.141        | 5.756      |                  | 803          | 649             |           |
| 1989                 | 6.329        | 4.503      |                  | 1.036        | 488             |           |
| 1990                 | 12.242       | 897        |                  | 1.775        | 94              |           |
| 1991                 | 12.790       | 2.015      |                  | 1.753        | 225             |           |
| 1992                 | 13.237       | 2.288      |                  | 1.800        | 324             |           |
| 1993                 | 20.478       | 3.395      |                  | 3.015        | 436             |           |
| 1994                 | 25.769       | 1.873      |                  | 3.691        | 263             |           |
| 1995                 | 39.789       | 706        |                  | 6.824        | 139             |           |
| 1996                 | 43.509       | 82         |                  | 9.511        | 28              |           |
| 1997                 | 47.893       | 19         |                  | 10.786       | 15              |           |
| 1998                 | 44.166       | 14         |                  | 7.680        | 4               |           |
| 1999                 | 36.298       | 108        |                  | 5.939        | 16              |           |
| 2000                 | 40.196       | 1.211      |                  | 7.735        | 13              |           |
| 2001                 | 41.508       | 1.675      |                  | 7.177        | 10              |           |
| 2002                 | 38.139       | 2.232      |                  | 7.129        | 28              |           |
| 2003                 | 29.463       | 1.266      | 799              | 4.797        | 37              | 179       |
| 2004                 | 23.958       | 750        | 8.309            | 5.098        | 28              | 1.005     |
| 2004                 | 10.707       | 496        | 18.063           | 4.657        | 31              | 1.981     |
| 2004                 | 10.707       |            |                  |              |                 | 4 442     |
|                      | 2.933        | 55         | 25.786           | 2.058        | 0               | 4.443     |
| 2005                 |              | 55<br>7    | 25.786<br>26.801 | 2.058<br>980 | 0               | 4.443     |
| 2005<br>2006         | 2.933        |            |                  |              |                 |           |
| 2005<br>2006<br>2007 | 2.933<br>978 | 7          | 26.801           | 980          | 0               | 4.382     |



A alocação da frota de veículos convertidos a GNV foi realizada considerando os dados fornecidos pelo DETRAN-RJ e as conversões fornecidas por GASNET (2011), conforme Tabela 36.

Tabela 36: Total de conversões de veículos a GNV por ano.

| Ano  | Total de conversões | Ano  | Total de conversões |
|------|---------------------|------|---------------------|
| 1992 | 800                 | 2002 | 60.373              |
| 1993 | 4.000               | 2003 | 62.123              |
| 1994 | 6.000               | 2004 | 75.680              |
| 1995 | 6.000               | 2005 | 94.398              |
| 1996 | 4.000               | 2006 | 116.485             |
| 1997 | 2.729               | 2007 | 88.597              |
| 1998 | 5.530               | 2008 | 49.705              |
| 1999 | 19.034              | 2009 | 43.311              |
| 2000 | 33.024              | 2010 | 55.654              |
| 2001 | 60.224              | 1    | =                   |

Desse modo, iniciou-se alocando os veículos a frota GNV dos veículos mais antigos para os mais novos, tendo como limitantes a quantidade de veículos a GNV de cada ano informada pelo DETRAN-RJ e a quantidade de conversões informadas pela GASNET.

Os veículos considerados como convertidos a GNV foram subtraídos da frota de veículos a qual pertenciam originalmente, com o intuito de evitar dupla contagem.



## ANEXO VI - CURVAS DE SUCATEAMENTO UTILIZADAS NA PESQUISA.

A função de sucateamento utilizada para os automóveis e veículos comerciais leves do ciclo Otto é uma função Gompertz apresentada na Equação AII.1. Os coeficientes das equações são os mesmos utilizados pelo Serviço de Planejamento da Petrobras, calibradas pelos dados da Pesquisa Nacional por Amostra de Domicílios (PNAD) (1998), a mesma utilizada no 1º Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários do ano de 2011.

$$S(t) = 1 - e^{-e^{(a+b*t)}}$$
 (AVI.1)

#### Onde:

S(t): é a fração de veículos remanescentes, ainda não sucateados, na idade t; t: é a idade do veículo em anos;

a e b: são parâmetros variáveis de acordo com o tipo de veículo de acordo com a tabela AVI.1.

A tabela 37 mostra os valores de a e b.

Tabela 37: Constantes da curva de sucateamento da equação 1.

| VEÍCULO                                 | a     | b      |
|-----------------------------------------|-------|--------|
| Automóveis                              | 1,798 | -0,137 |
| Veículos comerciais leves do ciclo Otto | 1,618 | -0,141 |

Para os comerciais leves do ciclo Diesel e caminhões, a função utilizada é uma função logística renormalizada, dada pela equação 38. Para a definição das constantes a serem utilizadas foi realizado um processo iterativo no qual após obter-se o valor da frota estimada, esta foi comparada com a frota estimada a partir do PIB, conforme Tabela 38 e 39 e Figura 57 e 58. Tal procedimento teve o intuito de verificar se a estimativa de frota encontrava-se de acordo com a realidade do Estado do Rio de Janeiro.

Além disso, foi realizada uma verificação da idade média dos veículos, considerando para os comerciais leves 8,2 anos e para os caminhões 13,5 anos, conforme ANTT (2010).

$$S(t) = \frac{1}{(1 + e^{(a*(t-t_0))})} + \frac{1}{(1 + e^{(a*(t+t_0))})}$$
(AVI.2)

#### Onde:

S(t): é a fração de veículos remanescentes, ainda não sucateados, na idade t; t: é a idade do veículo em anos.



Tabela 38: Dados de PIB e frota estimada de caminhões.

| Ano  | PIB        | Frota estimada | Frota calculada com<br>base no PIB |
|------|------------|----------------|------------------------------------|
| 1995 | 69.033,81  | 32.749,00      | 31.292,49                          |
| 1996 | 83.343,12  | 32.278,00      | 32.200,97                          |
| 1997 | 92.821,75  | 32.508,00      | 32.817,24                          |
| 1998 | 101.472,32 | 32.874,00      | 33.389,95                          |
| 1999 | 109.752,62 | 32.576,00      | 33.947,51                          |
| 2000 | 118.711,62 | 32.862,00      | 34.561,27                          |
| 2001 | 127.407,36 | 33.530,00      | 35.167,60                          |
| 2002 | 147.286,96 | 34.146,00      | 36.594,00                          |
| 2003 | 163.297,74 | 34.409,00      | 37.784,76                          |
| 2004 | 185.628,64 | 35.282,00      | 39.510,55                          |
| 2005 | 208.508,19 | 36.453,00      | 41.360,52                          |
| 2006 | 233.778,32 | 37.481,00      | 43.504,61                          |
| 2007 | 250.855,80 | 39.889,00      | 45.016,18                          |
| 2008 | 290.149,96 | 43.936,00      | 48.696,65                          |
| 2009 | 311.074,38 | 47.121,00      | 50.777,79                          |
| 2010 | 335.238,02 | 52.542,00      | 53.292,01                          |
| 2011 | 359401,66  | 57.962,00      | 55.930,71                          |
| 2012 | 383565,3   | 63.369,00      | 58.700,07                          |
| 2013 | 407728,94  | 68.756,00      | 61.606,55                          |
| 2014 | 431892,58  | 74.087,00      | 64.656,95                          |
| 2015 | 456056,22  | 79.350,00      | 67.858,37                          |
| 2016 | 480219,86  | 84.498,00      | 71.218,32                          |
| 2017 | 504383,5   | 89.500,00      | 74.744,63                          |
| 2018 | 528547,14  | 94.325,00      | 78.445,54                          |
| 2019 | 552710,78  | 98.932,00      | 82.329,70                          |
| 2020 | 576874,42  | 103.299,00     | 86.406,18                          |
| 2021 | 601038,06  | 107.425,00     | 90.684,50                          |
| 2022 | 625201,7   | 111.283,00     | 95.174,66                          |
| 2023 | 649365,34  | 114.890,00     | 99.887,15                          |
| 2024 | 673528,98  | 118.260,00     | 104.832,97                         |
| 2025 | 697692,62  | 121.424,00     | 110.023,68                         |
| 2026 | 721856,26  | 124.408,00     | 115.471,40                         |
| 2027 | 746019,9   | 127.252,00     | 121.188,86                         |
| 2028 | 770183,54  | 129.979,00     | 127.189,42                         |
| 2029 | 794347,18  | 132.618,00     | 133.487,08                         |
| 2030 | 818510,82  | 135.205,00     | 140.096,58                         |



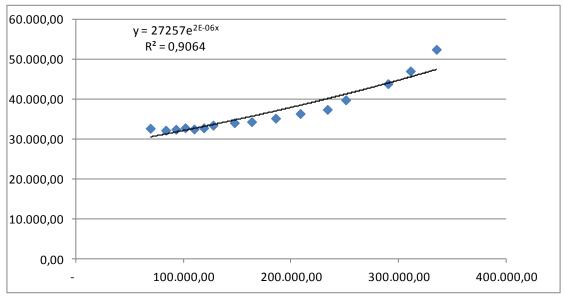



Figura 57: Correlação entre o PIB e a frota estimada de caminhões.

Tabela 39: Dados de PIB e frota estimada de caminhões.

| Ano  | PIB        | Frota estimada | Frota calculada com base no PIB |
|------|------------|----------------|---------------------------------|
| 1995 | 69.033,81  | 9.421,00       | 9.017,91                        |
| 1996 | 83.343,12  | 9.277,00       | 9.993,80                        |
| 1997 | 92.821,75  | 9.822,00       | 10.640,24                       |
| 1998 | 101.472,32 | 10.915,00      | 11.230,21                       |
| 1999 | 109.752,62 | 11.608,00      | 11.794,93                       |
| 2000 | 118.711,62 | 13.269,00      | 12.405,93                       |
| 2001 | 127.407,36 | 15.246,00      | 12.998,98                       |
| 2002 | 147.286,96 | 15.715,00      | 14.354,77                       |
| 2003 | 163.297,74 | 15.699,00      | 15.446,71                       |
| 2004 | 185.628,64 | 16.479,00      | 16.969,67                       |
| 2005 | 208.508,19 | 17.316,00      | 18.530,06                       |
| 2006 | 233.778,32 | 18.269,00      | 20.253,48                       |
| 2007 | 250.855,80 | 20.122,00      | 21.418,17                       |
| 2008 | 290.149,96 | 23.149,00      | 24.098,03                       |
| 2009 | 311.074,38 | 25.541,00      | 25.525,07                       |
| 2010 | 335.238,02 | 29.878,00      | 27.173,03                       |
| 2011 | 359401,66  | 33.906,75      | 28.820,99                       |
| 2012 | 383565,3   | 37.644,58      | 30.468,95                       |
| 2013 | 407728,94  | 41.097,51      | 32.116,91                       |
| 2014 | 431892,58  | 44.280,58      | 33.764,87                       |
| 2015 | 456056,22  | 47.215,82      | 35.412,83                       |
| 2016 | 480219,86  | 49.911,28      | 37.060,79                       |



| 2017 | 504383,5  | 52.399,00 | 38.708,75 |
|------|-----------|-----------|-----------|
| 2018 | 528547,14 | 54.700,00 | 40.356,71 |
| 2019 | 552710,78 | 56.835,33 | 42.004,68 |
| 2020 | 576874,42 | 58.820,03 | 43.652,64 |
| 2021 | 601038,06 | 60.688,14 | 45.300,60 |
| 2022 | 625201,7  | 62.440,70 | 46.948,56 |
| 2023 | 649365,34 | 64.113,75 | 48.596,52 |
| 2024 | 673528,98 | 65.708,34 | 50.244,48 |
| 2025 | 697692,62 | 67.254,50 | 51.892,44 |
| 2026 | 721856,26 | 68.740,28 | 53.540,40 |
| 2027 | 746019,9  | 70.202,73 | 55.188,36 |
| 2028 | 770183,54 | 71.637,89 | 56.836,32 |
| 2029 | 794347,18 | 73.051,80 | 58.484,28 |
| 2030 | 818510,82 | 74.458,52 | 60.132,24 |

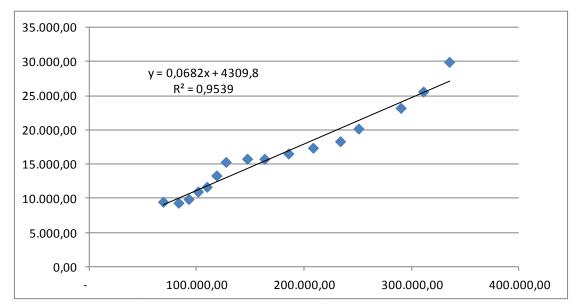



Figura 58: Correlação entre o PIB e a frota estimada de caminhões.

Com base nas verificações realizadas, foram definidos os valores de a e  $t_0$  para os comerciais leves do ciclo diesel e caminhões, conforme Tabela 40.

Tabela 40: Constantes da curva de sucateamento da equação 2.

| VEÍCULO                                   | a   | $t_0$ |
|-------------------------------------------|-----|-------|
| Veículos comerciais leves do ciclo Diesel | 0,2 | 4,00  |
| Caminhões                                 | 0,3 | 12,85 |



No que tange ao ônibus, a curva de sucateamento dos ônibus foi elaborada de acordo com as informações do banco de dados do DETRAN-RJ e da frota existente de acordo com a FETRANSPOR. A tabela 41 apresenta os valores da frota por ano de fabricação disponibilizada pela FETRANSPOR e os dados de cadastro do DETRAN para os anos de 1975 até 2010. Os dados são referentes ao ano de 2010.

Para elaboração da curva de sucateamento, foi considerada a informação do DETRAN-RJ como sendo uma estimativa da quantidade de licenciamentos realizada em cada ano. Como os dados da FETRANPOR representam uma boa estimativa da frota atual por ano de fabricação, foi calibrada uma equação para representar o sucateamento da frota de ônibus, utilizando a equação AVI.1. Da mesma forma que foi feito com os comerciais leves e caminhões, procedeu-se a verificação da frota estimada com a frota calculada pelo PIB, conforme Tabela 42 e Figura 58. A tabela 43 mostra os valores dos parâmetros a e b encontrados. A curva de sucateamento encontrada para os ônibus foi aplicada também para os microônibus.

Tabela 41: Valores da frota por ano de fabricação disponibilizada pela FETRANSPOR.

| ANO  | ÔNIBUS - DETRAN | ÔNIBUS - FETRANSPOR | IDADE |
|------|-----------------|---------------------|-------|
| 1975 | 135             | 2                   | 36    |
| 1977 | 254             | 2                   | 34    |
| 1978 | 303             | 2                   | 33    |
| 1981 | 367             | 1                   | 30    |
| 1982 | 487             | 2                   | 29    |
| 1983 | 539             | 1                   | 28    |
| 1984 | 380             | 5                   | 27    |
| 1985 | 306             | 1                   | 26    |
| 1986 | 439             | 4                   | 25    |
| 1987 | 435             | 4                   | 24    |
| 1988 | 764             | 2                   | 23    |
| 1989 | 651             | 1                   | 22    |
| 1990 | 414             | 7                   | 21    |
| 1991 | 488             | 10                  | 20    |
| 1992 | 437             | 9                   | 19    |
| 1993 | 447             | 26                  | 18    |
| 1994 | 485             | 35                  | 17    |
| 1995 | 772             | 137                 | 16    |
| 1996 | 682             | 143                 | 15    |
| 1997 | 925             | 183                 | 14    |
| 1998 | 1094            | 303                 | 13    |
| 1999 | 557             | 163                 | 12    |
| 2000 | 991             | 405                 | 11    |
| 2001 | 965             | 458                 | 10    |
| 2002 | 1355            | 827                 | 9     |
| 2003 | 1203            | 665                 | 8     |
| 2004 | 1626            | 1226                | 7     |
| 2005 | 2160            | 1740                | 6     |
| 2006 | 2681            | 2471                | 5     |
| 2007 | 3253            | 3166                | 4     |
| 2008 | 4409            | 4060                | 3     |
| 2009 | 3589            | 3368                | 2     |
| 2010 | 4598            | 3945                | 1     |



Tabela 42: Dados de PIB e frota estimada de caminhões.

| Ano  | PIB        | Frota calculada | Frota calculada com base no PIB |
|------|------------|-----------------|---------------------------------|
| 1995 | 69.033,81  | 7.638,00        | 8.711,94                        |
| 1996 | 83.343,12  | 9.515,00        | 10.125,70                       |
| 1997 | 92.821,75  | 11.574,00       | 11.062,19                       |
| 1998 | 101.472,32 | 13.239,00       | 11.916,87                       |
| 1999 | 109.752,62 | 13.789,00       | 12.734,96                       |
| 2000 | 118.711,62 | 15.107,00       | 13.620,11                       |
| 2001 | 127.407,36 | 15.931,00       | 14.479,25                       |
| 2002 | 147.286,96 | 16.517,00       | 16.443,35                       |
| 2003 | 163.297,74 | 17.352,00       | 18.025,22                       |
| 2004 | 185.628,64 | 19.087,00       | 20.231,51                       |
| 2005 | 208.508,19 | 20.757,00       | 22.492,01                       |
| 2006 | 233.778,32 | 22.548,00       | 24.988,70                       |
| 2007 | 250.855,80 | 25.371,00       | 26.675,95                       |
| 2008 | 290.149,96 | 30.205,00       | 30.558,22                       |
| 2009 | 311.074,38 | 33.239,00       | 32.625,55                       |
| 2010 | 335.238,02 | 37.859,47       | 35.012,92                       |
| 2011 | 359401,66  | 42.293,11       | 37.400,28                       |
| 2012 | 383565,3   | 46.484,16       | 39.787,65                       |
| 2013 | 407728,94  | 50.367,27       | 42.175,02                       |
| 2014 | 431892,58  | 53.920,70       | 44.562,39                       |
| 2015 | 456056,22  | 57.122,35       | 46.949,75                       |
| 2016 | 480219,86  | 59.990,28       | 49.337,12                       |
| 2017 | 504383,5   | 62.544,34       | 51.724,49                       |
| 2018 | 528547,14  | 64.825,35       | 54.111,86                       |
| 2019 | 552710,78  | 66.886,05       | 56.499,23                       |
| 2020 | 576874,42  | 68.758,02       | 58.886,59                       |
| 2021 | 601038,06  | 70.492,64       | 61.273,96                       |
| 2022 | 625201,7   | 72.121,28       | 63.661,33                       |
| 2023 | 649365,34  | 73.669,63       | 66.048,70                       |
| 2024 | 673528,98  | 75.161,90       | 68.436,06                       |
| 2025 | 697692,62  | 76.621,21       | 70.823,43                       |
| 2026 | 721856,26  | 78.062,60       | 73.210,80                       |
| 2027 | 746019,9   | 79.490,78       | 75.598,17                       |
| 2028 | 770183,54  | 80.912,89       | 77.985,53                       |
| 2029 | 794347,18  | 82.349,20       | 80.372,90                       |
| 2030 | 818510,82  | 83.790,89       | 82.760,27                       |



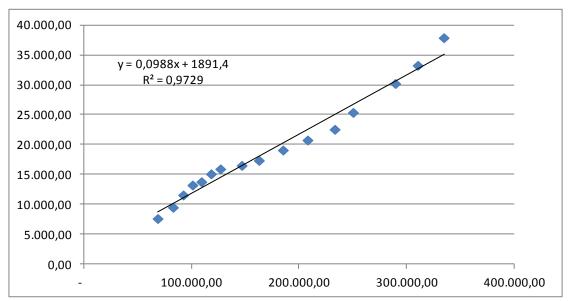



Figura 59: Correlação entre o PIB e a frota estimada de ônibus.

Tabela 43: Constantes da curva de sucateamento da equação 2 para ônibus e microônibus.

| VEÍCULO              | a    | b       |
|----------------------|------|---------|
| Ônibus e microônibus | 2,01 | -0,3003 |

Para as motocicletas foram utilizados os mesmo percentuais adotados no inventário nacional de emissões atmosférica por veículos automotores rodoviários do ano de 2011 que adotou a curva de sucateamento utilizada pelo SINDIPEÇAS (2009), cujas taxas anuais para motocicletas de até 200 cc estão apresentadas na tabela 44.

Tabela 44: Constantes da curva de sucateamento da equação 2.

| PERÍODO           | PERCENTUAL |
|-------------------|------------|
| Primeiros 5 anos  | 4%         |
| 6° ao 10° ano     | 5%         |
| 11° ao 15° ano    | 6%         |
| 16° ano em diante | 8%         |

Para os percentuais apresentados foi calibrada uma função Gompertz, equação 1, onde os valores das constantes a e b estão apresentados na tabela 45.

Tabela 45: Constantes da curva de sucateamento da Equação 1 para motocicletas.

| DISCRIMINAÇÃO | a      | b       | Idade |
|---------------|--------|---------|-------|
|               | 0,9239 | -0,0931 | ≥5    |
| Motocicletas  | 1,3173 | -0,1757 | <5    |



Para o cálculo da frota total em cada ano foram utilizadas as equações 3 e 4 que utilizam as Equações 1 e 2 respectivamente de acordo com o tipo de veículo.

$$Frota = \sum_{t=0}^{T} \left( 1 - e^{-e^{(a+b*t)}} \right). V_{t}$$
(AVI.3)

$$Frota = \sum_{t=0}^{T} \left( \frac{1}{(1 + e^{(a*(t-t_0))})} + \frac{1}{(1 + e^{(a*(t+t_0))})} \right) \cdot V_t$$
 (AVI.4)

## Onde:

T: Idade do veículo mais antigo considerado;

V<sub>t</sub>: Vendas estimadas de veículos de idade t no ano de sua fabricação.



# ANEXO VII – FRAÇÕES MÉDIAS DA FROTA DE VEÍCULOS FLEX FUEL QUE UTILIZAM GASOLINA C E ETANOL HIDRATADO.

Com o lançamento dos carros e motocicletas *flexible fuel* (*flex fuel*) em 2003 e 2009 respectivamente, existe a necessidade de se conhecer a proporção desses veículos que utilizam cada combustível para o cálculo separado das emissões. No 1º Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários foi utilizada a curva apresentada no Caderno de Bioenergia no estado de São Paulo (Goldemberg *et al.*,2008), que relacionam o consumo de combustível em veículos *flex fuel* e a razão de preços entre etanol hidratado e gasolina C. Porém, como o estudo citado apresenta uma tendência para o Brasil, entende-se que o comportamento apresentado pode não ser a melhor estimativa para o estado do Rio de Janeiro.

Sendo assim, para o presente trabalho, foi realizada uma pesquisa na cidade do Rio de Janeiro com usuários de carros *flex fuel* com objetivo de verificar o processo de escolha entre etanol e gasolina C baseada na variação da razão de preços entre os combustíveis.

### 1. Pesquisa de Campo

A pesquisa foi realizada com alunos da UFRJ e do IME de graduação e pós-graduação de diferentes áreas de estudo. Um total de 232 pessoas foram entrevistadas e responderam o questionário apresentado na tabela 46. Das 232 pessoas, apenas 142 pessoas eram usuários de carros *flex*, sendo descartada da pesquisa 90 pessoas.

Tabela 46: Perguntas realizadas aos entrevistados na pesquisa.

| ITEM    | PERGUNTA                                                     | PADRÃO DA RESPOSTA          |
|---------|--------------------------------------------------------------|-----------------------------|
| 1       | Qual a placa.                                                | Livre.                      |
| 2       | Qual o fabricante.                                           | Livre.                      |
| 3       | Qual o modelo.                                               | Livre.                      |
| 4       | Qual o ano de fabricação.                                    | Livre.                      |
| 5       | Qual o motor.                                                | 1.0, 1.4, 1.6 ou outros.    |
| 6       | Qual o combustível.                                          | Gasolina, Etanol, Diesel ou |
|         |                                                              | Flex.                       |
| Para as | pessoas que responderam Flex na pergunta 6, foram realiza    | adas as perguntas 7 a 11.   |
| 7       | Qual combustível utiliza quando o preço do etanol é igual ao | Gasolina ou Etanol.         |
|         | da gasolina.                                                 |                             |
| 8       | Qual o combustível utiliza quando o preço do etanol é 80%    | Gasolina ou Etanol.         |
|         | da gasolina.                                                 |                             |
| 9       | Qual o combustível utiliza quando o preço do etanol é 60%    | Gasolina ou Etanol.         |
|         | da gasolina.                                                 |                             |
| 10      | Qual o combustível utiliza quando o preço do etanol é 10%    | Gasolina ou Etanol.         |
|         | da gasolina.                                                 |                             |
| 11      | Quanto tempo usa carro <i>Flex</i> .                         | Em meses ou anos.           |



A Figura 60 apresenta a distribuição de frequência dos dados em relação ao tempo de uso de veículos *flex* pelos entrevistados, onde verifica-se que para maior parte dos dados encontra-se entre 1 a 4 anos.

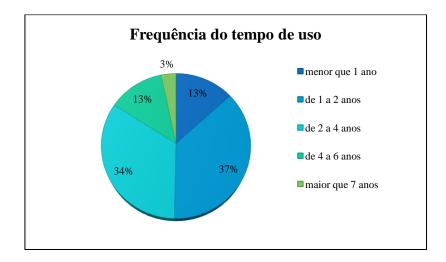



Figura 60: Distribuição da frequência do tempo de uso de veículos flex pelos entrevistados.

#### 1.1 Avaliação do tamanho da amostra

Segundo Montgomery (2003), em situações em que o tamanho da amostra puder ser selecionado, podemos escolher n de modo a estarmos  $100(1-\alpha)\%$  confiantes de que o erro seja menor do que algum valor especificado E. O valor do erro (E) pode ser estimado pela equação AVII.15.

$$E = Z_{\alpha/2} \cdot \sqrt{p(p-1)/n}$$
 (AVII.1)

A tabela AVII.2 apresenta os valores dos erros (E) para as situações A, B, C e D do presente trabalho para um tamanho de amostra de 142. Verifica-se que o maior erro ocorre para a situação C com um valor de 6,51%, entende-se que este erro não atrapalha as conclusões e análises do presente estudo.

Tabela 47: Erros estimados para as situações do trabalho.

| SITUAÇÕES DO TRABALHO | ERRO  | α  |
|-----------------------|-------|----|
| A                     | 3,91% | 5% |
| В                     | 4,09% | 5% |
| C                     | 6,51% | 5% |
| D                     | 5,17% | 5% |



#### 2. Classificação das idades

Como o objetivo da pesquisa é buscar um comportamento para a tendência de escolha entre os combustíveis etanol e gasolina C, as respostas foram ponderadas em relação ao tempo de uso de cada respondente.

Para identificar a importância do tempo de uso para a pesquisa a determinação dos pesos foi realizada com auxílio de lógica Fuzzy. Foram criados cinco conjuntos para a determinação da pertinência do tempo de uso dos respondentes em cada conjunto. A figura 61 mostra esses conjuntos e as representações das funções de pertinências para os anos considerados.

Para a determinação das funções de pertinências, foi realizada uma pesquisa a três especialistas da área de transporte de carga do programa de engenharia de transportes da UFRJ.

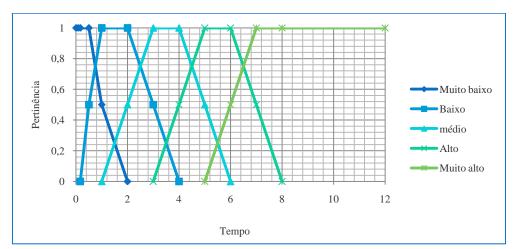



Figura 61 – Funções de pertinências para as variáveis lingüísticas utilizadas para classificar as idades.

As funções de pertinências utilizadas na pesquisa estão representadas nos conjuntos de equações abaixo.

2.1 Função de pertinência para o conjunto Muito Baixo.

$$f(x) = \begin{cases} 1, se \ 0 \le x < 0.5 \\ -4x + 4, se \ 0.5 \le x \le 2 \end{cases}$$
 (AVII.2)

2.2 Função de pertinência para o conjunto Baixo.



$$f(x) = \begin{cases} 1,2x - 0,2, se & \frac{1}{6} \le x < 1\\ 1, se & 1 \le x < 2\\ -0,5x + 2, se & 2 \le x \le 4 \end{cases}$$
 (AVII.3)

2.3 Função de pertinência para o conjunto Médio.

$$f(x) = \begin{cases} 0.5x - 0.5, se \ 1 \le x < 3 \\ 1, se \ 3 \le x < 4 \\ -0.5x + 3, se \ 4 \le x \le 6 \end{cases}$$
 (AVII.4)

2.4 Função de pertinência para o conjunto Alto.

$$f(x) = \begin{cases} 0.5x - 1.5, se \ 3 \le x < 5 \\ 1, se \ 5 \le x < 6 \\ -0.5x + 4, se \ 6 \le x \le 8 \end{cases}$$
 (AVII.5)

2.5 Função de pertinência para o conjunto Muito Alto.

$$f(x) = \begin{cases} 0.5x - 2.5, se \ 5 \le x < 7 \\ 1, se \ x \ge 7 \end{cases}$$
 (AVII.6)

#### 3. Avaliação dos conjuntos das idades

Os conjuntos baixo, muito baixo, alto e muito alto foram avaliados de acordo com o grau de contribuição na pesquisa por três especialistas da área de transporte de carga do programa de engenharia de transportes da UFRJ. Os conjuntos foram avaliados em relação à contribuição a tendência em Pouco, Moderado e Elevado. A figura 62 mostra as funções de pertinência para esses conjuntos.



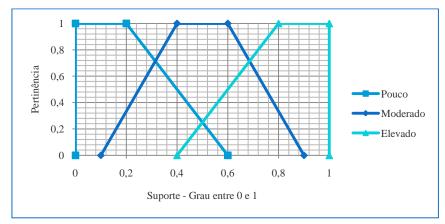



Figura 62 - Funções de pertinências para as variáveis lingüísticas utilizadas para classificar os conjuntos das idades.

As funções de pertinências estão representadas nos conjuntos de equações abaixo.

3.1 Função de pertinência para o conjunto Pouco.

$$f(x) = \begin{cases} 1, se \ 0 \le x < 0.2 \\ -2.5x + 1.5, se \ 0.2 \le x \le 0.6 \end{cases}$$
 (AVII.7)

3.2 Função de pertinência para o conjunto Moderado.

$$f(x) = \begin{cases} \frac{10}{3}x - \frac{1}{3}, se \ 0.1 \le x < 0.4 \\ 1, se \ 0.4 \le x < 0.6 \\ -\frac{1}{3}x + 3, se \ 0.6 \le x \le 0.9 \end{cases}$$
 (AVII.8)

3.3 Função de pertinência para o conjunto Médio

$$f(x) = \begin{cases} 2.5x + 0.5, se \ 0.4 \le x < 0.8 \\ 1, se \ x \ge 0.8 \end{cases}$$
 (AVII.9)

A tabela 48 mostra as avaliações para os conjuntos das idades para cada avaliador.

Tabela 48: Avaliação dos conjuntos das idades pelos especialistas.

| CONJUNTO DAS IDADES | ESPECIALISTA 1 | ESPECIALISTA 2 | ESPECIALISTA 3 |
|---------------------|----------------|----------------|----------------|
| Muito baixa         | Pouco          | Pouco          | Pouco          |
| Baixa               | Pouco          | Moderado       | Moderado       |
| Média               | Moderado       | Moderado       | Moderado       |
| Alta                | Moderado       | Elevado        | Moderado       |
| Muito alta          | Elevado        | Elevado        | Elevado        |



A avaliação de cada especialista será representada pelo número Fuzzy  $R_{ij}$ , onde representa a resposta do avaliador i em relação ao conjunto de idades j. A equação AVII.10 mostra a representação do número Fuzzy.

$$R_{ij} = (c_{ij}, a_{ij}, b_{ij}, d_{ij})$$
 (AVII.10)

A avaliação final de cada conjunto de idades foi calculada de acordo com a equação AVII.11. Os resultados das avaliações estão apresentados na tabela 49.

$$R_j = \left(\left(\frac{1}{3}\right) \otimes \left(R_{1j} \oplus R_{2j} \oplus R_{3j}\right)\right), j = 1, 2 \text{ e } 3.$$
(AVII.11)

Tabela 49: Avaliação final para cada conjunto das idades.

| CONJUNTOS DAS IDADES | NÚMEROS FUZZY |        |        |       |  |
|----------------------|---------------|--------|--------|-------|--|
| CONJUNTOS DAS IDADES | c             | a      | b      | d     |  |
| Muito baixa          | 0             | 0      | 0,2    | 0,6   |  |
| Baixa                | 0,0667        | 0,2667 | 0,4667 | 0,8   |  |
| Média                | 0,1           | 0,4    | 0,6    | 0,9   |  |
| Alta                 | 0,2           | 0,533  | 0,7333 | 0,933 |  |
| Muito alta           | 0,4           | 0,8    | 1      | 1     |  |

Com objetivo de se encontrar uma hierarquia representada por um peso para cada conjunto de idades, foi utilizado um indicador *fuzzy*, proposto por CHEN (1985), apresentado na equação AVII.12. O mesmo indicador foi utilizado por LIANG e WANG (1991) para selecionar localização de facilidades.

Dado um conjunto de i números fuzzy (Y<sub>i</sub>, Q<sub>i</sub>, R<sub>i</sub>, Z<sub>i</sub>), temos que:

$$U_T(F_i) \cong \left(\frac{(Z_i - x_1)}{(x_2 - x_1) - (R_i - Z_i)} + 1 - \frac{x_2 - Y_i}{(x_2 - x_1) + (Q_i - Y_i)}\right)^{1/2}$$
(AVII.12)

Onde  $x_1$ : é o mínimo valor do conjunto  $F_i$  ( $Y_i$ ,  $Q_i$ ,  $R_i$  ou  $Z_i$ ).

x<sub>2</sub>: é o máximo do conjunto F<sub>i</sub> (Y<sub>i</sub>, Q<sub>i</sub>, R<sub>i</sub> ou Z<sub>i</sub>).

A Tabela 50 apresenta a utilidade que será utilizada como peso para os conjuntos das idades utilizadas na pesquisa.

Tabela 50: Pesos para os conjuntos das idades.

| CONJUNTOS DAS IDADES | PESOS (UTILIDADE) |
|----------------------|-------------------|
| Muito baixa          | 0,21              |
| Baixa                | 0,41              |
| Média                | 0,50              |
| Alta                 | 0,59              |
| Muito alta           | 0,79              |



### 4. Estimativa dos percentuais de gasolina e etanol

Cada resposta da pesquisa foi ponderada de acordo com o peso dos conjuntos de idades. Porém, cada resposta possui um valor *crisp* para o tempo de uso de veículos *flex*. Cada entrevistado terá um grau de pertinência em cada conjunto de idades calculado pelas equações AVII.2 a AVII.6. O peso final da resposta de cada entrevistado foi calculado pela equação AVII.13.

$$Peso_{k} = \frac{P_{k}^{MB} * Peso_{MB} + P_{k}^{B} * Peso_{B} + P_{k}^{M} * Peso_{M} + P_{k}^{A} * Peso_{A} + P_{k}^{MA} * Peso_{MA}}{Peso_{MB} + Peso_{B} + Peso_{M} + Peso_{A} + Peso_{MA}}$$
(AVII.13)

Depois de determinado os pesos dos avaliadores (entrevistados), foi determinada a estimativa de percentual de escolha de combustíveis em 4 situações apresentadas na tabela 51.

Tabela 51: Situações avaliadas.

| SITUAÇÕES | DESCRIÇÃO DAS SITUAÇÕES                   |
|-----------|-------------------------------------------|
| A         | Preço do etanol é igual da gasolina       |
| В         | Preço do etanol é igual a 80% da gasolina |
| С         | Preço do etanol é igual a 60% da gasolina |
| D         | Preço do etanol é igual a 10% da gasolina |

Para se determinar a estimativa para o valor o percentual de pessoas que utilizam gasolina para cada situação da tabela 50, foi utilizada a equação AVII.14.

$$Perc_{x}^{G} = \frac{\sum_{k=1}^{n} Peso_{k,x}^{gasolina}}{\sum_{k=1}^{n} Peso_{k,x}^{gasolina} + \sum_{k=1}^{n} Peso_{k,x}^{etanol}}$$
(AVII.14)

Onde:

 $Peso_{k,x}^G =$ 

 $\{Peso_k, se\ o\ entrevistado\ k\ respondeu\ que\ usa\ gasolina\ na\ situação\ x.\ 0, caso\ contrário$ 

n: número total de entrevistados

x: situação A, B, C ou D.

A tabela 52 apresenta os valores encontrados para as estimativas da tendência de percentual de pessoas que utilizam gasolina e etanol nas situações A, B, C e D.



Tabela 52: Estimativas de percentuais para cada situação.

| SITUAÇÃO | PERCENTUAL QUE USA GASOLINA | PERCENTUAL QUE USA ETANOL |
|----------|-----------------------------|---------------------------|
| A        | 94,00%                      | 6,00%                     |
| В        | 93,37%                      | 6,63%                     |
| C        | 19,48%                      | 80,52%                    |
| D        | 11,14%                      | 88,86%                    |

Para as séries de médias de preços entre gasolina e etanol, verificou-se que os valores ficaram entre as situações A e B. Logo, optou-se por fazer uma interpolação linear para se encontrar os valores dos percentuais de gasolina e etanol para os anos estudados. A equação AVII.15 apresenta o valor estimado para o percentual de pessoas que utilizam etanol quando o preço do etanol está entre 60% e 80% da gasolina.

$$Percentual_{etanol} = -3,6945 * \frac{Pre \varsigma o_{etanol}}{Pre \varsigma o_{gasolina}} + 3,0219, se 0,6 \le \frac{Pre \varsigma o_{etanol}}{Pre \varsigma o_{gasolina}} \le 0,8$$
(AVII.15)

# 5. Comparação com os resultados de Goldemberg (2008)

Com a finalidade de validar os resultados encontrados, os valores foram comparados com o estudo realizado por Goldemberg *et al.* (2008). A figura 63 apresenta os resultados do estudo realizado por GOLDEMBERG (2008) que apresenta a fração média (ponderada pelo número de veículos) da frota de veículos *flex* em cada Estado, em função da razão média dos preços dos combustíveis na bomba, obtidos a partir dos levantamentos mensais de preços da ANP no período de 2005-2007.

A curva contínua corresponde à função que melhor representa o comportamento brasileiro médio de usar o AEHC (álcool etílico hidratado carburante) em veículos leves, em resposta à relação dos preços dos combustíveis. A curva tracejada indica a curva ideal que corresponde a um uso de AEHC por 50% da frota flexível quando a razão de preços por litro entre o AEHC e a gasolina C for a de equilíbrio de autonomia, ou seja, 70%.



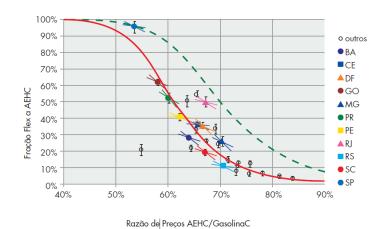



Figura 63: Fração da frota de veículos flexíveis operando com AEHC em função da relação de preços entre o AEHC e a gasolina C, nos postos, em cada unidade da Federação.

Da análise da figura 64 onde apresenta a comparação dos estudos, identifica-se os seguintes itens importantes:

Item 1: Os resultados do estudo atual ficaram entre o comportamento nacional e o dito como ideal no estudo de GOLDEMBER, 2008;

Item 2: O ponto do estado do Rio de Janeiro para o estudo de GOLDEMBER (2008) ficou próximo ao comportamento encontrado no presente trabalho;

Item 3: Mesmo com o preço do etanol 10% em relação ao da gasolina, ainda existem pessoas que permanecem usando a gasolina;

Item 4: Mesmo com preço do etanol igual ao da gasolina, ainda existem pessoas que permanecem usando o etanol;

Item 5: As quatro situações estudadas no presente trabalho (A, B, C e D) não foram suficiente para elaborar uma curva representativa do comportamento de escolha entre os combustíveis, devido a isto, optou-se pela interpolação entre os percentuais de 60% e 80% do preço do etanol em relação a gasolina.



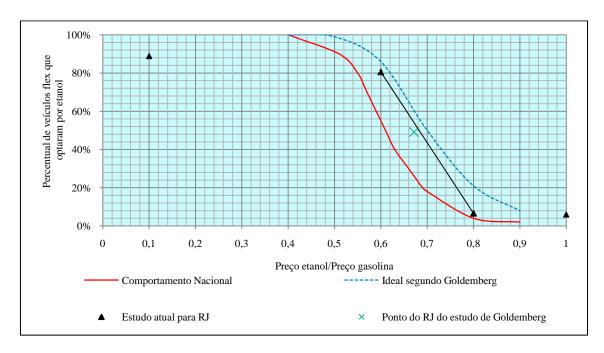



Figura 64: Comparação entre os resultados do estudo de Goldemberg (2008) e os deste trabalho.



# ANEXO VIII – PREVISÃO DA EVOLUÇÃO DAS VENDAS DE VEÍCULOS – 2011 A 2030.

A previsão das vendas de veículos utilizada no Inventário de Emissões Atmosféricas por Veículos Automotores do Estado do Rio de Janeiro seguiu as taxas apresentadas na Tabela 15 apresentada no item 6.2 deste relatório, adaptadas do INEAVAR (2011). A adoção destas taxas se deve a consideração de similaridade entre as frotas de veículos nacionais e do estado do Rio de Janeiro balizada pela verificação de como seria a projeção desta frota a partir de variáveis sócio econômicas exógenas ao processo já utilizado – projeção por tendência de crescimento. Tais variáveis são usualmente as variáveis sócio-econômicas produto interno bruto (PIB) e população.

A opção por adotar, sempre que possível, os parâmetros de INEAVAR (2011) deve-se ao potencial de comparação entre os resultados do inventário nacional e do Estado do Rio de Janeiro. Porém, em função das projeções do INEAVAR (2011) se limitarem ao ano de 2020 e de aspectos específicos da frota do Estado do Rio de Janeiro a adoção exata dos parâmetros do INEAVAR (2011) nem sempre foi possível, havendo a necessidade de adequá-los a realidade do Rio do Janeiro, sendo necessário avaliações complementares que se apresentam neste Anexo.

Assim sendo, este anexo apresenta as considerações e estimativas realizadas para as vendas de veículos novos no estado do Rio de Janeiro. Para o estabelecimento das tendências considerou-se como variável dependente as estimativa de vendas anuais obtidas do banco de dados do DETRAN-RJ, anteriores a 2010.

#### 1. Variáveis socioeconômicas utilizadas

Com objetivo de correlacionar as vendas com variáveis socioeconômicas, foram utilizadas as séries históricas do PIB-VABPB (Produto Interno Bruto - Valor adicionado bruto a preços básicos) e população total do estado do Rio de Janeiro disponibilizadas no IBGE. A tabela 53 apresenta os dados de PIB e população utilizados na pesquisa.



Tabela 53 – Dados de PIB-VABPB e população utilizados na pesquisa.

| ANO  | PIB -VALOR ADICIONADO BRUTO<br>A PREÇOS BÁSICOS (1.000.000 R\$) | POPULAÇÃO<br>TOTAL |
|------|-----------------------------------------------------------------|--------------------|
| 1995 | 69.033,81333                                                    | ND                 |
| 1996 | 83.343,12258                                                    | 13.406.308         |
| 1997 | 92.821,74857                                                    | ND                 |
| 1998 | 101.472,3232                                                    | ND                 |
| 1999 | 109.752,6168                                                    | ND                 |
| 2000 | 118.711,6235                                                    | 14.391.282         |
| 2001 | 127.407,3642                                                    | ND                 |
| 2002 | 147.286,962                                                     | ND                 |
| 2003 | 163.297,7429                                                    | ND                 |
| 2004 | 185.628,642                                                     | ND                 |
| 2005 | 208.508,1931                                                    | ND                 |
| 2006 | 233.778,3247                                                    | ND                 |
| 2007 | 250.855,8029                                                    | 15.420.375         |
| 2008 | 290.149,9625                                                    | ND                 |
| 2010 | ND                                                              | 15.989.929         |

Legenda:. ND: não disponível.

Fonte: IBGE, 2011

Com objetivo de realizar projeções até o ano de 2030, foi avaliada a tendência em relação à variável ano para o PIB e população. A tabela 54 mostra a análise da regressão do PIB-VABPB em função do ano e o gráfico 64 a variação anual dos dados.

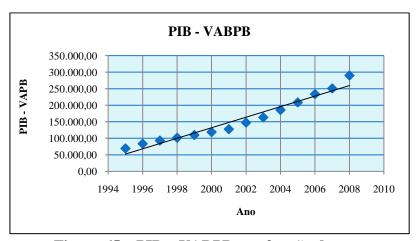



Figura 65 – PIB – VABPB em função do ano.

Tabela 54 - Análise da regressão do PIB-VABPB em função do ano.

RESUMO DOS RESULTADOS DA REGRESSÃO DO PIB



| Estatística de r    | egressão     | -           |             |                           |                        |
|---------------------|--------------|-------------|-------------|---------------------------|------------------------|
| R múltiplo          | 0,98         | -           |             |                           |                        |
| R-Quadrado          | 0,95         |             |             |                           |                        |
| R-quadrado ajustado | 0,95         |             |             |                           |                        |
| Observações         | 14           | <u>-</u>    |             |                           |                        |
| ANOVA               |              |             |             |                           |                        |
|                     | gl           | SQ          | MQ          | $oldsymbol{F}$            | F de significação      |
| Regressão           | 1            | 58048601977 | 58048601977 | 239,19                    | 2,73.10 <sup>-09</sup> |
| Resíduo             | 12           | 2912251102  | 242687591,8 |                           |                        |
| Total               | 13           | 60960853079 |             |                           |                        |
|                     | Coeficientes | Erro padrão | Stat t      | valor-P                   | -                      |
| Interseção          | -31815474,8  | 2067233,627 | -15,39      | 2,89605.10 <sup>-09</sup> | <del>.</del>           |
| Ano                 | 15973,69     | 1032,840087 | 15,47       | 2,73819.10 <sup>-09</sup> |                        |

A tabela 55 mostra a análise da regressão da população em função do ano e o gráfico 65 a variação anual dos dados para a população total do Rio de Janeiro.

Tabela 55 – Análise da regressão da população em função do ano.

| RESUM               | O DOS RESULTAD | OOS DA REGRE   | SSÃO DA I | POPULAÇÃO '           | TOTAL             |
|---------------------|----------------|----------------|-----------|-----------------------|-------------------|
| Estatística de      | regressão      | -              |           |                       |                   |
| R múltiplo          | 0,99           | -              |           |                       |                   |
| R-Quadrado          | 0,99           |                |           |                       |                   |
| R-quadrado ajustado | 0,98           |                |           |                       |                   |
| Observações         | 4              | _              |           |                       |                   |
| ANOVA               |                |                |           |                       |                   |
|                     | gl             | SQ             | MQ        | F                     | F de significação |
| Regressão           | 1              | 121,44         | 121,44    | 185,16                | 0,0054            |
| Resíduo             | 2              | 1,31           | 0,66      |                       |                   |
| Total               | 3              | 122,75         |           |                       |                   |
|                     | Coeficientes   | Erro padrão    | Stat t    | valor-P               | _                 |
| Interseção          | 1920,76        | 6,08           | 316,14    | 1,00.10 <sup>-5</sup> | =                 |
| Ano                 | $5,57.10^{-6}$ | $4,10.10^{-7}$ | 13,61     | 0,0054                |                   |

A tabela 56 apresenta os valores da extrapolação dos dados, ou seja, as estimativas do PIB-VABPB e população total do Rio de Janeiro até o ano de 2030, baseado na tendência observada entre os anos utilizados para elaboração da regressão linear.



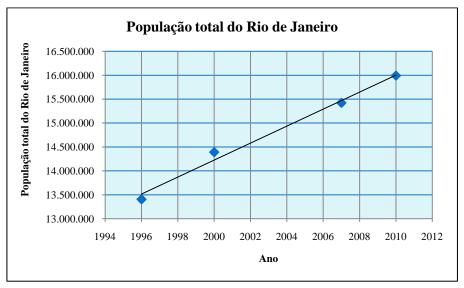



Figura 66 - População total do Rio de Janeiro em função do ano.

Tabela 56 – Estimativas para o PIB – VABPB e População total do Rio de Janeiro.

| ANO  | PIB - VABPB | POPULAÇÃO TOTAL |
|------|-------------|-----------------|
| 2009 | 311.074,38  | 15.781.908      |
| 2010 | 335.238,02  | 15.940.864      |
| 2011 | 359.401,66  | 16.099.820      |
| 2012 | 383.565,30  | 16.258.776      |
| 2013 | 407.728,94  | 16.417.732      |
| 2014 | 431.892,58  | 16.576.688      |
| 2015 | 456.056,22  | 16.735.644      |
| 2016 | 480.219,86  | 16.894.600      |
| 2017 | 504.383,50  | 17.053.556      |
| 2018 | 528.547,14  | 17.212.512      |
| 2019 | 552.710,78  | 17.371.468      |
| 2020 | 576.874,42  | 17.530.424      |
| 2021 | 601.038,06  | 17.689.380      |
| 2022 | 625.201,70  | 17.848.336      |
| 2023 | 649.365,34  | 18.007.292      |
| 2024 | 673.528,98  | 18.166.248      |
| 2025 | 697.692,62  | 18.325.204      |
| 2026 | 721.856,26  | 18.484.160      |
| 2027 | 746.019,90  | 18.643.116      |
| 2028 | 770.183,54  | 18.802.072      |
| 2029 | 794.347,18  | 18.961.028      |
| 2030 | 818.510,82  | 19.119.984      |

# 2. Estimativa para a venda de automóveis

De posse dos valores observados e estimados do PIB- VABPB e População se tentou elaborar uma regressão linear para estimar as vendas de veículos em função dessas variáveis socioeconômicas. Cabe ressaltar que está se realizando uma extrapolação,



supondo que a tendência permaneça a mesma. Logo, outros cenários poderiam ser elaborados.

A tabela 57 apresenta os testes preliminares para a escolha das variáveis e intervalo de tempo para elaboração do modelo de regressão. A inclusão da variável população aumentou o R<sup>2</sup> para as duas opções de intervalo de tempo analisadas. Como nos últimos dez anos o resultado apresentou um coeficiente de determinação (R<sup>2</sup>) melhor, decidiu-se utilizar o modelo com as variáveis PIB- VABPB e População para os últimos dez anos para realizar a estimativa de vendas de automóveis.

OpçãoVariáveis independentesIntervalo de tempoR²1PIB- VABPB1995 a 20100,51

Tabela 57 – Avaliação preliminar dos modelos.

2 PIB- VABPB e População 1995 a 2010 0,84
3 PIB- VABPB 2000 a 2010 0,80
4 PIB- VABPB e População 2000 a 2010 0,89

A tabela 58 mostra a análise da regressão de previsão de vendas de automóveis para a opção 4 da tabela 56. A venda de automóveis não foi dividida por combustíveis, foi

realizada, inicialmente, de forma agregada. Considerando como referência as taxas do INEAVAR (2011) que adota um crescimento anual da venda de automóveis de 4,8% de 2010 a 2015 e 3,8% de 2016 a 2020. A tabela 59 mostra as estimativas segundo a regressão elaborada neste trabalho e utilizando os percentuais utilizados no INEAVAR (2011). A diferença entre as duas estimativas é relativamente pequena.

Tabela 58 – Análise da regressão da estimativa de vendas de automóveis em função do PIB e população.

|                     |               | uo i ib c popula  | ,                |           |              |
|---------------------|---------------|-------------------|------------------|-----------|--------------|
| RESUMO D            | OS RESULTADOS | DA REGRESSÃO PA   | ARA ESTIMATIVA I | DE AUTOMO | ÓVEIS        |
|                     |               |                   |                  |           |              |
| Estatística de      | regressão     | -                 |                  |           |              |
| R múltiplo          | 0,94          |                   |                  |           |              |
| R-Quadrado          | 0,89          |                   |                  |           |              |
| R-quadrado ajustado | 0,86          |                   |                  |           |              |
| Observações         | 11            |                   |                  |           |              |
| ANOVA               |               |                   |                  |           |              |
|                     |               |                   |                  |           | F de         |
|                     | gl            | SQ                | MQ               | F         | significação |
| Regressão           | 2             | 13.717.160.326,54 | 6.858.580.163,27 | 32,19     | 0,0001       |
| Resíduo             | 8             | 1.704.453.753,10  | 213.056.719,14   |           |              |
| Total               | 10            | 15.421.614.079,64 | ·                |           |              |
|                     | Coeficientes  | Erro padrão       | Stat t           | valor-P   | -            |
| Interseção          | 3.754.075,60  | 1544271,78        | 2,43             | 0,04      | _            |
| PIB                 | 2,33          | 0,77              | 3,01             | 0,016     |              |
| População           | -0,27         | 0,11              | -2,41            | 0,04      | _            |



Tabela 59 – Estimativa para vendas de automóveis.

| ANO  | VEND             | AS ESTIMADAS              |
|------|------------------|---------------------------|
|      | REGRESSÃO LINEAR | PERCENTUAL INEAVAR (2011) |
| 2011 | 209.825          | 213.159                   |
| 2012 | 222.779          | 223.391                   |
| 2013 | 235.732          | 234.113                   |
| 2014 | 248.685          | 245.351                   |
| 2015 | 261.639          | 257.128                   |
| 2016 | 274.592          | 269.470                   |
| 2017 | 287.545          | 279.710                   |
| 2018 | 300.498          | 290.339                   |
| 2019 | 313.452          | 301.371                   |
| 2020 | 326.405          | 312.824                   |
| 2021 | 339.358          | 324.711                   |
| 2022 | 352.312          | 337.050                   |
| 2023 | 365.265          | 349.858                   |
| 2024 | 378.218          | 363.152                   |
| 2025 | 391.171          | 376.952                   |
| 2026 | 404.125          | 391.276                   |
| 2027 | 417.078          | 406.145                   |
| 2028 | 430.031          | 421.578                   |
| 2029 | 442.985          | 437.598                   |
| 2030 | 455.938          | 454.227                   |

A Figura 67 mostra a evolução das estimativas até 2030, onde percebe-se pouca diferença entre as duas considerações.



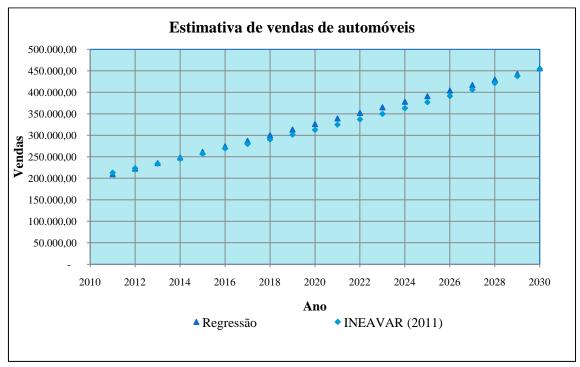



Figura 67 – Estimativa de vendas de automóveis.

Para estimar a quantidade de carros por combustível, foi avaliada a variação do percentual de vendas de veículos por combustível ao longo do tempo. A tabela 60 mostra a variação do percentual para os últimos dez anos.

No INEAVAR (2011), foi adotado o mesmo percentual observado para o ano de 2009, último ano de coleta de dados, no Brasil de 4% para veículos a gasolina, 0% pra veículos a etanol e 96% para veículos flex.

A tabela 60 apresenta os percentuais para o estado do Rio de Janeiro e o observado também para o ano de 2010. Identifica-se uma leve diferença entre os dados do Rio de Janeiro e do Brasil considerado no INEAVAR (2011).

Em relação à estimativa de vendas de automóveis por combustível, têm-se duas combinações a analisar. Combinação A: Utilizar o percentual adotado pelo INEAVAR (2011) e Combinação B: Utilizar a última observação do ano de 2010 para os anos seguintes para o estado do Rio de Janeiro.



Tabela 60 – Percentual de vendas por combustível no Rio de Janeiro.

| ANO         |          | AUTOMÓVEIS |           |        | Obsamvação             |
|-------------|----------|------------|-----------|--------|------------------------|
| ANO         | Gasolina | Etanol     | Flex fuel | Diesel | Observação             |
| 2001        | 98,43%   | 1,55%      | 0,02%     | 0,03%  | Observado              |
| 2002        | 97,82%   | 2,17%      | 0,01%     | 0,00%  | Observado              |
| 2003        | 95,66%   | 1,58%      | 2,76%     | 0,00%  | Observado              |
| 2004        | 75,61%   | 0,87%      | 23,52%    | 0,00%  | Observado              |
| 2005        | 40,20%   | 0,54%      | 59,26%    | 0,00%  | Observado              |
| 2006        | 17,40%   | 0,05%      | 82,55%    | 0,00%  | Observado              |
| 2007        | 10,68%   | 0,00%      | 89,31%    | 0,00%  | Observado              |
| 2008        | 8,05%    | 0,00%      | 91,94%    | 0,00%  | Observado              |
| 2009        | 5,86%    | 0,00%      | 94,14%    | 0,00%  | Observado              |
| 2010        | 7,48%    | 0,00%      | 92,52%    | 0,00%  | Observado              |
| 2010 a 2030 | 7,48%    | 0,00%      | 92,52%    | 0,00%  | Estimado, combinação B |

#### 3. Estimativa para a venda de comerciais leves

A tabela 61 apresenta os testes preliminares para a escolha das variáveis e intervalo de tempo para elaboração do modelo de regressão. A inclusão da variável população aumentou o R<sup>2</sup> para as duas opções de intervalo de tempo analisadas. Como nos últimos dez anos o resultado apresentou um coeficiente de determinação (R<sup>2</sup>) melhor, decidiu-se utilizar o modelo com as variáveis PIB- VABPB e População para os últimos dez anos para realizar a estimativa de vendas de automóveis.

Tabela 61 – Avaliação preliminar dos modelos para comerciais leves.

| Opção | Variáveis independentes | Intervalo de tempo | $\mathbb{R}^2$ |
|-------|-------------------------|--------------------|----------------|
| 1     | PIB- VABPB              | 1995 a 2010        | 0,56           |
| 2     | PIB- VABPB e População  | 1995 a 2010        | 0,86           |
| 3     | PIB- VABPB              | 2000 a 2010        | 0,82           |
| 4     | PIB- VABPB e População  | 2000 a 2010        | 0,90           |

A tabela 62 mostra a análise da regressão de previsão de vendas de comerciais leves para a opção 4 da tabela 61. A venda de automóveis não foi dividida por combustíveis, foi realizada, inicialmente, de forma agregada. No INEAVAR (2011) foi considerado como premissa um crescimento anual da venda de automóveis de 4,8% de 2010 a 2015 e 3,8% de 2016 a 2020 para o ciclo Otto e de 2,2% para veículos do ciclo diesel.

A tabela 63 mostra as estimativas segundo a regressão elaborada neste trabalho e utilizando os percentuais utilizados no INEAVAR (2011). O gráfico 67 mostra a evolução anual das estimativas para ambas as situações.



Tabela 62 – Análise da regressão da estimativa de vendas de comerciais leves em função do PIB e população.

| RESUMO DOS RES      | SULTADOS DA RE | EGRESSÃO PARA  | ESTIMATIVA DI  | E COME  | RCIAIS LEVES      |
|---------------------|----------------|----------------|----------------|---------|-------------------|
| Estatística de      | regressão      |                |                |         |                   |
| R múltiplo          | 0,95           |                |                |         |                   |
| R-Quadrado          | 0,90           |                |                |         |                   |
| R-quadrado ajustado | 0,87           |                |                |         |                   |
| Observações         | 11             |                |                |         |                   |
| ANOVA               |                |                |                |         |                   |
|                     | gl             | SQ             | MQ             | F       | F de significação |
| Regressão           | 2              | 891.851.032,01 | 445.925.516,00 | 35,19   | 0,0001            |
| Resíduo             | 8              | 101.362.121,99 | 12.670.265,25  |         |                   |
| Total               | 10             | 993.213.154,00 |                |         |                   |
|                     | Coeficientes   | Erro padrão    | Stat t         | valor-P |                   |
| Interseção          | 942.120,58     | 376590,16      | 2,50           | 0,0368  |                   |
| PIB                 | 0,59           | 0,19           | 3,15           | 0,0137  |                   |
| População           | -0,069         | 0,028          | -2,52          | 0,0360  |                   |

Tabela 63 – Estimativa para vendas de comerciais leves.

|      | VENDAS ESTIMADAS |            |                         |        |  |  |  |
|------|------------------|------------|-------------------------|--------|--|--|--|
| ANO  | REGRESSÃO LINEAR | PERCENT    | PERCENTUAL INEAVAR (201 |        |  |  |  |
|      | Total            | Ciclo Otto | Ciclo Diesel            | Total  |  |  |  |
| 2011 | 39.394           | 37.292     | 7.320                   | 44.612 |  |  |  |
| 2012 | 42.697           | 39.082     | 7.481                   | 46.563 |  |  |  |
| 2013 | 46.000           | 40.958     | 7.645                   | 48.603 |  |  |  |
| 2014 | 49.303           | 42.924     | 7.813                   | 50.737 |  |  |  |
| 2015 | 52.605           | 44.984     | 7.985                   | 52.970 |  |  |  |
| 2016 | 55.908           | 46.694     | 8.161                   | 54.855 |  |  |  |
| 2017 | 59.211           | 48.468     | 8.340                   | 56.809 |  |  |  |
| 2018 | 62.514           | 50.310     | 8.524                   | 58.834 |  |  |  |
| 2019 | 65.816           | 52.222     | 8.711                   | 60.933 |  |  |  |
| 2020 | 69.119           | 54.206     | 8.903                   | 63.109 |  |  |  |
| 2021 | 72.422           | 56.266     | 9.099                   | 65.365 |  |  |  |
| 2022 | 75.725           | 58.404     | 9.299                   | 67.703 |  |  |  |
| 2023 | 79.028           | 60.623     | 9.504                   | 70.127 |  |  |  |
| 2024 | 82.330           | 62.927     | 9.713                   | 72.640 |  |  |  |
| 2025 | 85.633           | 65.318     | 9.927                   | 75.245 |  |  |  |
| 2026 | 88.936           | 67.800     | 10.145                  | 77.945 |  |  |  |
| 2027 | 92.239           | 70.377     | 10.368                  | 80.745 |  |  |  |
| 2028 | 95.541           | 73.051     | 10.596                  | 83.647 |  |  |  |
| 2029 | 98.844           | 75.827     | 10.829                  | 86.656 |  |  |  |
| 2030 | 102.147          | 78.708     | 11.068                  | 89.776 |  |  |  |



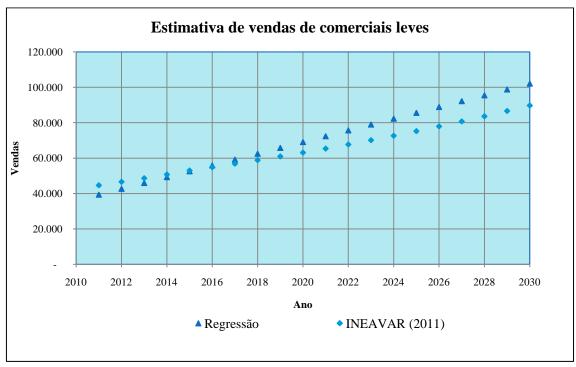



Figura 68 – Estimativa de vendas de comerciais leves.

Para estimar a quantidade de comerciais leves por combustível, foi avaliada a variação do percentual de vendas de veículos por combustível ao longo do tempo. A tabela 64 mostra a variação do percentual para os últimos dez anos.

No INEAVAR (2011), foi adotado o mesmo percentual observado para o ano de 2009 no Brasil de 22% para veículos a gasolina, 0% pra veículos a etanol e 78% para veículos flex.

A tabela 64 apresenta os percentuais para o estado do Rio de Janeiro e o observado também para o ano de 2010. Observam-se diferenças nos percentuais observados para os dados do Rio de Janeiro e Brasil.

Em relação à estimativa de vendas de automóveis por combustível, têm-se duas combinações a analisar. Combinação A: Utilizar o percentual adotado pelo INEAVAR (2011) e Combinação B: Utilizar a última observação do ano de 2010 para os anos seguintes para o estado do Rio de Janeiro.



COMERCIAIS LEVES **ANO** Para o Ciclo Otto Em relação ao total Observação Diesel Gasolina **Etanol** Flex fuel Gasolina **Etanol** Flex fuel 99,43% 0,55% 0,02% 75,45% 0,42% 0,01% 24,12% 2001 Observado 99,32% 0,54% 2002 0,66% 0,02% 82,05% 0,02% 17,39% Observado 2003 95,15% 0,62% 4,23% 79,38% 0,52% 3,53% 16,57% Observado 2004 82,27% 0,31% 17,41% 67,58% 0,26% 14,30% 17,85% Observado 2005 64,38% 0,30% 35,31% 53,67% 0,25% 29,44% 16,64% Observado 35,98% 0,00% 64,02% 29,88% 0,00% 53,16% 16,97% Observado 2006 31,48% 0,00% 25,95% 0,00% <u>56,5</u>0% 17,55% Observado 2007 68,52%

31,98%

31,96%

36,44%

36,44%

0,00%

0,00%

0,00%

0,00%

49,79%

52,14%

46,80%

46,80%

18,24%

15,90%

16,75%

16,75%

Observado

Observado

Observado

Estimado,

combinação B

Tabela 64 – Percentuais de vendas de comerciais leves no Rio de Janeiro.

#### 4. Estimativa para a venda Motocicletas

0,00%

0,00%

0,00%

0,00%

60,89%

61,99%

56,22%

56,22%

39,11%

38,01%

43,78%

43,78%

2008

2009

2010

2030

2010 a

A tabela 65 apresenta os testes preliminares para a escolha das variáveis e intervalo de tempo para elaboração do modelo de regressão. De uma análise prévia do comportamento dos dados, foi observado que os anos de 2007 e 2008 apresentaram vendas muito acima do valor esperado. Logo, foram testados modelos com e sem esses anos.

Tabela 65 – Avaliação preliminar dos modelos para motocicletas.

| Opção | Variáveis independentes | Intervalo de tempo              | $\mathbb{R}^2$ |
|-------|-------------------------|---------------------------------|----------------|
| 1     | PIB- VABPB              | 1995 a 2010                     | 0,74           |
| 2     | PIB- VABPB e População  | 1995 a 2010                     | 0,75           |
| 3     | PIB- VABPB              | 1995 a 2010, exceto 2007 e 2008 | 0,94           |
| 4     | PIB- VABPB e População  | 1995 a 2010, exceto 2007 e 2008 | 0,96           |
| 5     | PIB- VABPB              | 2000 a 2010                     | 0,57           |
| 6     | PIB- VABPB e População  | 2000 a 2010                     | 0,58           |
| 7     | PIB- VABPB              | 2000 a 2010, exceto 2007 e 2008 | 0,93           |
| 8     | PIB- VABPB e População  | 2000 a 2010, exceto 2007 e 2008 | 0,93           |

As opções com maior intervalo de tempo (1, 2, 3 e 4) apresentaram maior coeficiente de correlação. A consideração das duas variáveis socioeconômicas simultaneamente melhorou o desempenho dos modelos. Como os anos de 2007 e 2008 apresentaram valor de vendas maior do que o esperado, decidiu-se avaliar os modelos 4 que considera as duas variáveis socioeconômicas e descarta esses anos e o modelo 2 que os considera.

A tabela 66 mostra a análise da regressão de previsão de vendas de motocicletas para a opção 2 da tabela 65 e a tabela 67 para a opção 4. A venda de motocicletas não foi dividida por combustíveis, foi realizada, inicialmente, de forma agregada. No INEAVAR (2011) foi considerado como premissa um crescimento anual da venda de motocicletas de 4,8% de 2010 a 2015 e 3,8% de 2016 a 2020 para o ciclo Otto.



Tabela 66 – Análise da regressão da estimativa de vendas de motocicletas em função do PIB e população, considerando os anos de 1995 a 2010.

| RESUMO DOS          | RESULTADOS D | A REGRESSÃO PAR   | A ESTIMATIVA DI  | E MOTO | CICLETAS          |
|---------------------|--------------|-------------------|------------------|--------|-------------------|
| Estatística de l    | regressão    |                   |                  |        |                   |
| R múltiplo          | 0,86         |                   |                  |        |                   |
| R-Quadrado          | 0,75         |                   |                  |        |                   |
| R-quadrado ajustado | 0,71         |                   |                  |        |                   |
| Observações         | 16           |                   |                  |        |                   |
| ANOVA               |              |                   |                  |        |                   |
|                     | gl           | SQ                | MQ               | F      | F de significação |
| Regressão           | 2            | 8.295.351.532,15  | 4.147.675.766,07 | 19,09  | 0,0001            |
| Resíduo             | 13           | 2.824.444.471,85  | 217.264.959,37   |        |                   |
| Total               | 15           | 11.119.796.004,00 |                  |        |                   |
|                     |              |                   |                  | valor- |                   |
|                     | Coeficientes | Erro padrão       | Stat t           | P      |                   |
| Interseção          | - 53.951,31  | 206192,96         | -0,26            | 0,7977 | •                 |
| PIB                 | 0,24         | 0,15              | 1,57             | 0,1406 |                   |
| População           | 0,003        | 0,016             | 0,22             | 0,8314 |                   |

Tabela 67 – Análise da regressão da estimativa de vendas de motocicletas em função do PIB e população, considerando os anos de 1995 a 2010, excluindo os anos de 2007 e 2008.

| STIMATIVA DE MO  | TOCICL  | ETAS OPÇAO 4      |
|------------------|---------|-------------------|
|                  |         |                   |
|                  |         |                   |
|                  |         |                   |
|                  |         |                   |
|                  |         |                   |
|                  |         |                   |
|                  |         |                   |
|                  |         |                   |
|                  |         |                   |
| MQ               | F       | F de significação |
| 1.822.637.236,96 | 151,92  | 0,0000            |
| 11.997.065,07    |         |                   |
|                  |         |                   |
| Stat t           | valor-P |                   |
|                  | 0,0233  |                   |
| -2,63            | 0,0163  |                   |
| -2,63<br>2,83    | 0.0243  |                   |
|                  | 2,83    |                   |



Tabela 68 – Estimativa para vendas de motocicletas.

|      | VENDAS ESTIMADAS |         |                               |  |  |
|------|------------------|---------|-------------------------------|--|--|
| ANO  | REGRESSÃO LINEAR |         | DED CENTELLA LINEA VAD (2011) |  |  |
|      | OPÇÃO 2          | OPÇÃO 4 | PERCENTUAL INEAVAR (2011)     |  |  |
| 2011 | 88.324           | 67.233  | 69.557                        |  |  |
| 2012 | 94.719           | 71.366  | 72.896                        |  |  |
| 2013 | 101.114          | 75.498  | 76.395                        |  |  |
| 2014 | 107.508          | 79.630  | 80.061                        |  |  |
| 2015 | 113.903          | 83.762  | 83.904                        |  |  |
| 2016 | 120.298          | 87.894  | 87.932                        |  |  |
| 2017 | 126.693          | 92.026  | 91.273                        |  |  |
| 2018 | 133.088          | 96.158  | 94.742                        |  |  |
| 2019 | 139.483          | 100.290 | 98.342                        |  |  |
| 2020 | 145.878          | 104.422 | 102.079                       |  |  |
| 2021 | 152.272          | 108.555 | 105.958                       |  |  |
| 2022 | 158.667          | 112.687 | 109.984                       |  |  |
| 2023 | 165.062          | 116.819 | 114.164                       |  |  |
| 2024 | 171.457          | 120.951 | 118.502                       |  |  |
| 2025 | 177.852          | 125.083 | 123.005                       |  |  |
| 2026 | 184.247          | 129.215 | 127.679                       |  |  |
| 2027 | 190.642          | 133.347 | 132.531                       |  |  |
| 2028 | 197.036          | 137.479 | 137.567                       |  |  |
| 2029 | 203.431          | 141.612 | 142.795                       |  |  |
| 2030 | 209.826          | 145.744 | 148.221                       |  |  |

A Figura 69 mostra a evolução anual das estimativas para as três situações. Observa-se que a opção 4 é muito próxima da série resultante dos percentuais utilizados pelo INEAVAR (2011).



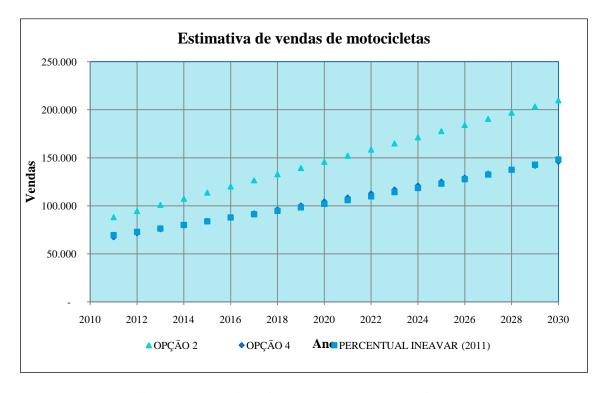



Figura 69 – Estimativa de vendas de motocicletas.

No INEAVAR (2011), foi adotado o mesmo percentual observado para o ano de 2009 no Brasil de 88% para motocicletas a gasolina e 12% para motocicletas flex.

A tabela 69 apresenta os percentuais para o estado do Rio de Janeiro e o observado também para o ano de 2010. Observam-se diferenças nos percentuais observados para os dados do Rio de Janeiro e Brasil e um percentual bem maior de motocicletas flex no ano de 2010. A estimativa foi realizada até se chegar a um valor próximo de 50% para as duas opções de combustíveis adotando a mesma taxa de crescimento observada no ano de 2010 em relação a 2009 para motocicletas flex.

Tabela 69 - Percentuais de vendas de motocicletas no Rio de Janeiro.

| ANO         | МОТОС    | CICLETAS  | Observação  |
|-------------|----------|-----------|-------------|
| ANO         | GASOLINA | FLEX FUEL | Obsei vaçao |
| 2008        | 100,00%  | 0,00%     | Observado   |
| 2009        | 86,81%   | 13,19%    | Observado   |
| 2010        | 79,70%   | 20,30%    | Observado   |
| 2011        | 68,75%   | 31,25%    | Estimado    |
| 2012        | 51,89%   | 48,11%    | Estimado    |
| 2013 a 2030 | 51,89%   | 48,11%    | Estimado    |



Em relação à estimativa de vendas de motocicletas por combustível, têm-se duas combinações a analisar. Combinação A: Utilizar o percentual adotado pelo INEAVAR (2011) e Combinação B: Utilizar as estimativas apresentadas na tabela 69.

### 5. Estimativa para a venda Caminhões

A tabela 70 apresenta os testes preliminares para a escolha das variáveis e intervalo de tempo para elaboração do modelo de regressão.

Tabela 70 – Avaliação preliminar dos modelos para caminhões.

| Opção | Variáveis independentes | Intervalo de tempo | $\mathbb{R}^2$ |
|-------|-------------------------|--------------------|----------------|
| 1     | PIB- VABPB              | 1995 a 2010        | 0,70           |
| 2     | PIB- VABPB e População  | 1995 a 2010        | 0,82           |
| 3     | PIB- VABPB              | 2000 a 2010        | 0,83           |
| 4     | PIB- VABPB e População  | 2000 a 2010        | 0,88           |

A tabela 71 mostra a análise da regressão de previsão de vendas de caminhões para a opção 4 da tabela 62 que apresentou maior coeficiente de determinação. No INEAVAR (2011) foi considerado como premissa um crescimento anual da venda de caminhões de 5,00%.

Em relação à divisão em leves, médios e pesados, o INEAVAR (2011) utilizou as mesmas proporções observadas em 2009 para o Brasil (respectivamente 30%, 10% e 60%).

Tabela 71 – Análise da regressão da estimativa de vendas de caminhões no Rio de Janeiro.

| Estatística de      | regressão    | -             |               |         |                   |
|---------------------|--------------|---------------|---------------|---------|-------------------|
| R múltiplo          | 0,91         | -             |               |         |                   |
| R-Quadrado          | 0,82         |               |               |         |                   |
| R-quadrado ajustado | 0,80         |               |               |         |                   |
| Observações         | 16           | _             |               |         |                   |
| ANOVA               |              |               |               |         |                   |
|                     | gl           | SQ            | MQ            | F       | F de significação |
| Regressão           | 2            | 34.744.092,10 | 17.372.046,05 | 30,34   | 0,000013          |
| Resíduo             | 13           | 7.443.540,33  | 572.580,03    |         |                   |
| Total               | 15           | 42.187.632,44 |               |         |                   |
|                     | Coeficientes | Erro padrão   | Stat t        | valor-P |                   |
| Interseção          | 32.685,74    | 10585,15      | 3,09          | 0,0086  |                   |
| PIB                 | 0,04         | 0,01          | 4,94          | 0,0003  |                   |
| População           | -0,002       | 0.001         | -3,00         | 0,0102  |                   |



Tabela 72 – Estimativa para vendas de caminhões no Rio de Janeiro.

| ANO  | VEND             | AS ESTIMADAS              |
|------|------------------|---------------------------|
| ANO  | REGRESSÃO LINEAR | PERCENTUAL INEAVAR (2011) |
| 2011 | 7.549            | 8.541                     |
| 2012 | 8.108            | 8.968                     |
| 2013 | 8.667            | 9.416                     |
| 2014 | 9.225            | 9.887                     |
| 2015 | 9.784            | 10.381                    |
| 2016 | 10.343           | 10.900                    |
| 2017 | 10.902           | 11.445                    |
| 2018 | 11.461           | 12.018                    |
| 2019 | 12.019           | 12.619                    |
| 2020 | 12.578           | 13.249                    |
| 2021 | 13.137           | 13.912                    |
| 2022 | 13.696           | 14.607                    |
| 2023 | 14.255           | 15.338                    |
| 2024 | 14.813           | 16.105                    |
| 2025 | 15.372           | 16.910                    |
| 2026 | 15.931           | 17.756                    |
| 2027 | 16.490           | 18.643                    |
| 2028 | 17.049           | 19.575                    |
| 2029 | 17.607           | 20.554                    |
| 2030 | 18.166           | 21.582                    |



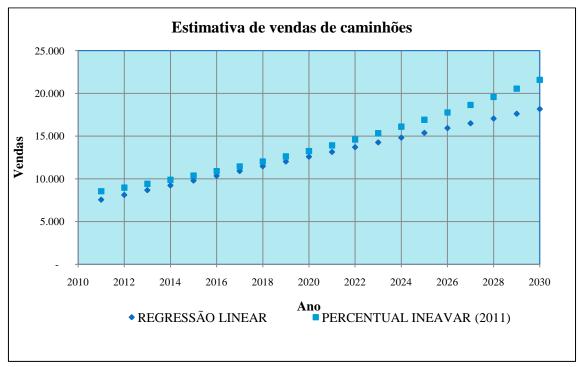



Figura 70 – Estimativa de vendas de caminhões.

## 6. Estimativa para a venda ônibus

A tabela 73 apresenta os testes preliminares para a escolha das variáveis e intervalo de tempo para elaboração do modelo de regressão.

Tabela 73 – Avaliação preliminar dos modelos para ônibus.

| Opção | Variáveis independentes | Intervalo de tempo | $\mathbb{R}^2$ |
|-------|-------------------------|--------------------|----------------|
| 1     | PIB- VABPB              | 1995 a 2010        | 0,79           |
| 2     | PIB- VABPB e População  | 1995 a 2010        | 0,91           |
| 3     | PIB- VABPB              | 2000 a 2010        | 0,89           |
| 4     | PIB- VABPB e População  | 2000 a 2010        | 0,92           |

A tabela 74 mostra a análise da regressão de previsão de vendas de comerciais leves para a opção 4 da tabela 62 que apresentou maior coeficiente de determinação. No INEAVAR (2011) foi considerado como premissa um crescimento anual da venda de caminhões de 1,7%.

Em relação à divisão em urbanos e rodoviários, o INEAVAR (2011) utilizou as mesmas proporções observadas em 2009 para o Brasil (respectivamente 90% e 10%).

A tabela 74 mostra a análise da regressão de previsão de vendas de ônibus para a opção 4 da tabela 62 que apresentou maior coeficiente de determinação. No INEAVAR (2011) foi considerado como premissa um crescimento anual da venda de caminhões de 1,70%.



Tabela 74 – Análise da regressão da estimativa de vendas de ônibus no Rio de Janeiro.

| Estatística de re   | egressão     |               |               |         |                   |
|---------------------|--------------|---------------|---------------|---------|-------------------|
| R múltiplo          | 0,91         |               |               |         |                   |
| R-Quadrado          | 0,82         |               |               |         |                   |
| R-quadrado ajustado | 0,80         |               |               |         |                   |
| Observações         | 16           |               |               |         |                   |
| ANOVA               |              |               |               |         |                   |
|                     | gl           | SQ            | MQ            | F       | F de significação |
| Regressão           | 2            | 34.744.092,10 | 17.372.046,05 | 30,34   | 0,000013          |
| Resíduo             | 13           | 7.443.540,33  | 572.580,03    |         |                   |
| Total               | 15           | 42.187.632,44 |               |         |                   |
|                     | Coeficientes | Erro padrão   | Stat t        | valor-P |                   |
| Interseção          | 32.685,74    | 10585,15      | 3,09          | 0,0086  |                   |
| PIB                 | 0,04         | 0,01          | 4,94          | 0,0003  |                   |
| População           | -0,002       | 0,001         | -3,00         | 0,0102  |                   |

Tabela 75 – Estimativa para vendas de ônibus no Rio de Janeiro.

| ANIO | VENDAS ESTIMADAS |                           |  |  |  |  |
|------|------------------|---------------------------|--|--|--|--|
| ANO  | REGRESSÃO LINEAR | PERCENTUAL INEAVAR (2011) |  |  |  |  |
| 2011 | 7.549            | 8.272                     |  |  |  |  |
| 2012 | 8.108            | 8.413                     |  |  |  |  |
| 2013 | 8.667            | 8.556                     |  |  |  |  |
| 2014 | 9.225            | 8.701                     |  |  |  |  |
| 2015 | 9.784            | 8.849                     |  |  |  |  |
| 2016 | 10.343           | 9.000                     |  |  |  |  |
| 2017 | 10.902           | 9.153                     |  |  |  |  |
| 2018 | 11.461           | 9.308                     |  |  |  |  |
| 2019 | 12.019           | 9.467                     |  |  |  |  |
| 2020 | 12.578           | 9.628                     |  |  |  |  |
| 2021 | 13.137           | 9.791                     |  |  |  |  |
| 2022 | 13.696           | 9.958                     |  |  |  |  |
| 2023 | 14.255           | 10.127                    |  |  |  |  |
| 2024 | 14.813           | 10.299                    |  |  |  |  |
| 2025 | 15.372           | 10.474                    |  |  |  |  |
| 2026 | 15.931           | 10.652                    |  |  |  |  |
| 2027 | 16.490           | 10.833                    |  |  |  |  |
| 2028 | 17.049           | 11.017                    |  |  |  |  |
| 2029 | 17.607           | 11.205                    |  |  |  |  |
| 2030 | 18.166           | 11.395                    |  |  |  |  |

A Figura 71 mostra a evolução anual das estimativas para a previsão dada pela regressão linear do presente trabalho e a dos percentuais utilizados pelo INEAVAR



(2011). Observa-se que a diferença entre os modelos de previsão aumentam com o tempo.

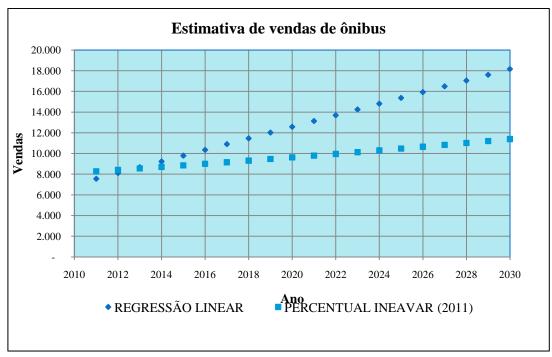



Figura 71 – Estimativa de vendas de ônibus.



# ANEXO IX – PREVISÃO DE ESTIMATIVA DE CONSUMO DE COMBUSTÍVEIS PARA O PERÍODO DE 2011 A 2030.

Para que se possam avaliar as intensidades de uso das frotas projetadas para o período de 2011 a 2030 é necessário que se realize a previsão da estimativa de consumo de combustíveis.

Este anexo apresenta as considerações e estimativas realizadas para a previsão de consumo de combustíveis para uso rodoviário no estado do Rio de Janeiro no período de 2011 a 2030.

## 1. Previsão de estimativa de combustíveis para o uso em motores do ciclo Otto

Para analisar o comportamento da demanda por combustíveis para o uso em motores do ciclo Otto, decidiu-se avaliar, primeiramente, a demanda agregada por energia em quilocalorias [kcal]<sup>6</sup>. Logo, todo o consumo de gasolina C, etanol hidratado e gás natural veícular (GNC) observado foi transformado para kcal. A tabela 76 apresenta os parâmetros utilizados para conversão.

Tabela 76 – Densidades e poderes caloríficos inferiores.

| Produtos e unidades | Densidade (t/m3) | Poder calorífico inferior (Kcal/kg) |
|---------------------|------------------|-------------------------------------|
| Gasolina C          | 0,75425          | 10.200                              |
| Gás Natural Seco    | 0,00074          | 8.800                               |
| Etanol hidratado    | 0,80900          | 6.300                               |

Fonte: Anuário estatístico da ANP, 2010.

A tabela 77 apresenta os valores de consumo de gasolina C, etanol hidratado e gás natural seco<sup>7</sup> a partir de 1980, ano da primeira observação disponível A tabela 78 apresenta o valor equivalente em consumo de poderes caloríficos inferiores para cada combustível por ano.

\_

<sup>&</sup>lt;sup>6</sup> Isso de deve ao fato de que gasolina, etanol e gás natural são combustíveis substitutos para uso em motores do ciclo Otto, logo, é possível que o consumo agregado cresça em função das variáveis sócio-econômicas explicativas do seu consumo enquanto individualmente possa haver flutuações (para cima e para baixo) de consumo de um combustível individualemnte.

<sup>&</sup>lt;sup>7</sup> Adotou-se o dado gás natural seco como representativo do GNV.



Tabela 77 – Consumo anual de etanol hidratado, gasolina C e GNV no estado do Rio de Janeiro.

| ANO  | ETANOL HIDRATADO (m3) | GASOLINA (m3) | GNV (m3)         |
|------|-----------------------|---------------|------------------|
| 1980 | 59.751,00             | 1.740.171,00  | 01() (1110)      |
| 1981 | 179.124,00            | 1.551.013,00  |                  |
| 1982 | 207.511,00            | 1.608.358,00  |                  |
| 1983 | 351.581,00            | 1.436.392,00  |                  |
| 1984 | 527.458,00            | 1.271.543,00  |                  |
| 1985 | 665.455,00            | 1.225.367,00  |                  |
| 1986 | 880.397,00            | 1.312.527,00  |                  |
| 1987 | 979.801,00            | 1.149.610,00  |                  |
| 1988 | 1.104.443,00          | 1.086.040,00  |                  |
| 1989 | 1.215.364,79          | 1.371.838,49  |                  |
| 1990 | 1.300.553,70          | 1.321.613,12  |                  |
| 1991 | 1.139.322,95          | 1.413.856,09  |                  |
| 1992 | 997.139,42            | 1.276.828,57  | 500.000,00       |
| 1993 | 946.225,35            | 1.424.388,95  | 5.000.000,00     |
| 1994 | 949.043,32            | 1.566.190,29  | 15.000.000,00    |
| 1995 | 936.703,19            | 1.873.926,17  | 22.800.000,00    |
| 1996 | 887.970,06            | 2.178.531,15  | 17.300.000,00    |
| 1997 | 718.000,82            | 2.275.770,29  | 27.000.000,00    |
| 1998 | 524.663,82            | 2.256.054,53  | 58.000.000,00    |
| 1999 | 477.278,35            | 2.032.758,19  | 91.000.000,00    |
| 2000 | 231.707,64            | 1.847.747,04  | 169.000.000,00   |
| 2001 | 155.572,41            | 1.772.336,57  | 296.000.000,00   |
| 2002 | 157.566,84            | 1.971.934,25  | 421.000.000,00   |
| 2003 | 98.177,87             | 1.764.595,11  | 535.000.000,00   |
| 2004 | 109.816,56            | 1.848.172,40  | 635.000.000,00   |
| 2005 | 180.528,03            | 1.739.318,62  | 785.000.000,00   |
| 2006 | 224.254,94            | 1.660.802,99  | 958.000.000,00   |
| 2007 | 359.404,27            | 1.635.151,71  | 1.087.000.000,00 |
| 2008 | 677.059,60            | 1.616.429,48  | 1.061.000.000,00 |
| 2009 | 872.814,00            | 1.636.891,00  | 977.000.000,00   |
| 2010 | 746.457,54            | 1.867.262,00  | 969.000.000,00   |

Fonte: Anuário estatístico da ANP, 2010.



Tabela 78 – Energia consumida anualmente em kcal de etanol hidratado, gasolina C e GNV no estado do Rio de Janeiro.

| ANO  | ETANOL HIDRATADO (Kcal) | GASOLINA (Kcal)       | GAS (Kcal)           | TOTAL                 |
|------|-------------------------|-----------------------|----------------------|-----------------------|
| 1980 | 304.532.921.700,00      | 13.387.744.562.850,00 | -                    | 13.692.277.484.550,00 |
| 1981 | 912.941.290.800,00      | 11.932.485.863.550,00 | -                    | 12.845.427.154.350,00 |
| 1982 | 1.057.621.313.700,00    | 12.373.661.019.300,00 | -                    | 13.431.282.333.000,00 |
| 1983 | 1.791.902.882.700,00    | 11.050.666.393.200,00 | -                    | 12.842.569.275.900,00 |
| 1984 | 2.688.295.188.600,00    | 9.782.425.339.050,00  | -                    | 12.470.720.527.650,00 |
| 1985 | 3.391.624.498.500,00    | 9.427.177.209.450,00  | -                    | 12.818.801.707.950,00 |
| 1986 | 4.487.119.389.900,00    | 10.097.729.595.450,00 | -                    | 14.584.848.985.350,00 |
| 1987 | 4.993.751.756.700,00    | 8.844.352.093.500,00  | -                    | 13.838.103.850.200,00 |
| 1988 | 5.629.014.638.100,00    | 8.355.285.834.000,00  | -                    | 13.984.300.472.100,00 |
| 1989 | 6.194.349.730.289,70    | 10.554.033.670.121,60 | -                    | 16.748.383.400.411,20 |
| 1990 | 6.628.532.022.403,20    | 10.167.632.289.058,60 | -                    | 16.796.164.311.461,80 |
| 1991 | 5.806.787.253.781,50    | 10.877.289.726.921,50 | -                    | 16.684.076.980.703,00 |
| 1992 | 5.082.120.481.914,00    | 9.823.089.094.396,20  | 3.256.000.000,00     | 14.908.465.576.310,20 |
| 1993 | 4.822.626.736.248,30    | 10.958.322.720.789,20 | 32.560.000.000,00    | 15.813.509.457.037,50 |
| 1994 | 4.836.989.073.753,90    | 12.049.250.044.491,40 | 97.680.000.000,00    | 16.983.919.118.245,40 |
| 1995 | 4.774.095.138.279,60    | 14.416.769.892.276,10 | 148.473.600.000,00   | 19.339.338.630.555,70 |
| 1996 | 4.525.717.004.802,00    | 16.760.202.615.159,20 | 112.657.600.000,00   | 21.398.577.219.961,20 |
| 1997 | 3.659.434.789.487,40    | 17.508.297.368.264,80 | 175.824.000.000,00   | 21.343.556.157.752,20 |
| 1998 | 2.674.054.106.684,10    | 17.356.617.126.068,90 | 377.696.000.000,00   | 20.408.367.232.753,00 |
| 1999 | 2.432.544.581.735,10    | 15.638.720.244.116,60 | 592.592.000.000,00   | 18.663.856.825.851,70 |
| 2000 | 1.180.944.313.497,90    | 14.215.364.697.877,30 | 1.100.528.000.000,00 | 16.496.837.011.375,20 |
| 2001 | 792.905.896.950,30      | 13.635.205.543.116,20 | 1.927.552.000.000,00 | 16.355.663.440.066,50 |
| 2002 | 803.070.908.331,30      | 15.170.780.339.157,50 | 2.741.552.000.000,00 | 18.715.403.247.488,70 |
| 2003 | 500.383.129.642,20      | 13.575.647.758.745,10 | 3.483.920.000.000,00 | 17.559.950.888.387,30 |
| 2004 | 559.702.076.642,10      | 14.218.637.156.620,00 | 4.135.120.000.000,00 | 18.913.459.233.262,10 |
| 2005 | 920.097.205.404,30      | 13.381.186.920.563,70 | 5.111.920.000.000,00 | 19.413.204.125.968,00 |
| 2006 | 1.142.960.162.891,40    | 12.777.138.652.343,10 | 6.238.496.000.000,00 | 20.158.594.815.234,50 |
| 2007 | 1.831.775.743.867,17    | 12.579.794.393.434,80 | 7.078.544.000.000,00 | 21.490.114.137.302,00 |
| 2008 | 3.450.769.671.847,16    | 12.435.757.750.969,90 | 6.909.232.000.000,00 | 22.795.759.422.817,10 |
| 2009 | 4.448.471.113.800,00    | 12.593.175.374.850,00 | 6.362.224.000.000,00 | 23.403.870.488.650,00 |
| 2010 | 3.804.470.123.731,20    | 14.365.500.107.700,00 | 6.310.128.000.000,00 | 24.480.098.231.431,20 |

Fonte: Anuário estatístico da ANP, 2010.

A Figura 72 apresenta a variação da energia consumida anualmente em poder calorífico total em função do ano. Observou-se um comportamento linear com pouca variação a partir do ano de 2001, então foi realizada uma regressão linear com objetivo de estimar



o poder calorífico total em função do PIB-VABPB (Produto Interno Bruto - Valor adicionado bruto a preços básicos).

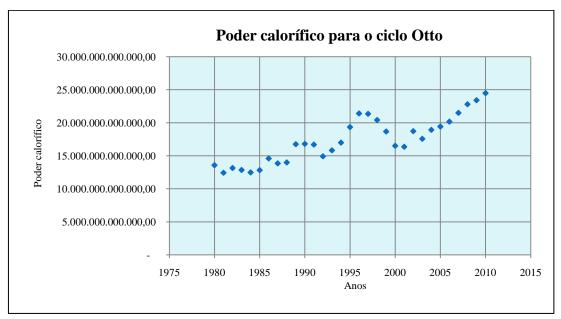



Figura 72: Poder calorífico total em função do ano para o ciclo Otto.

A tabela 79 mostra a análise da regressão para a estimativa do poder calorífico em função do PIB – VABPB para os últimos dez anos.

Tabela 79 – Análise da regressão do poder calorífico em função do PIB - VABPB.

|                     | RESUMO DOS            | RESULTADOS DA I       | REGRESSÃO             | )                      |                   |
|---------------------|-----------------------|-----------------------|-----------------------|------------------------|-------------------|
| Estatística         | ı de regressão        | _                     |                       |                        |                   |
| R múltiplo          | 0,98                  | _                     |                       |                        |                   |
| R-Quadrado          | 0,96                  |                       |                       |                        |                   |
| R-quadrado ajustado | 0,96                  |                       |                       |                        |                   |
| Observações         | 10                    | _                     |                       |                        |                   |
| ANOVA               |                       |                       |                       |                        |                   |
|                     | gl                    | SQ                    | MQ                    | F                      | F de significação |
| Regressão           | 1                     | $6,07.10^{25}$        | 6,07.10 <sup>25</sup> | 207,02                 | 0,00000053        |
| Resíduo             | 8                     | $2,35.10^{24}$        | $2,93.\ 10^{23}$      |                        |                   |
| Total               | 9                     | 6,30.10 <sup>25</sup> |                       |                        |                   |
|                     |                       | Е 1 ~                 | C                     | 1 D                    | _                 |
|                     | Coeficientes          | Erro padrão           | Stat t                | valor-P                | _                 |
| Interseção          | 12.120.375.636.960,20 | 595.632.288.058,82    | 20,35                 | $3,56.10^{-8}$         |                   |
| PIB - VABPB         | 36.428.828,69         | 2.531.866,181         | 14,39                 | 5,32. 10 <sup>-7</sup> | _                 |
|                     |                       |                       |                       |                        |                   |



#### 1.1 Estimativa do consumo de GNV

Para a realização da estimativa do consumo de GNV, foi realizada uma regressão linear com objetivo de estimar este consumo em função da frota total de GNV. A frota total de GNV foi determinada pela soma dos automóveis e comerciais leves convertidos.

A tabela 80 mostra a análise da regressão para a estimativa do consumo de GNV em função da frota, considerando os anos de 1992 a 2010.

Tabela 80 – Análise da regressão do consumo de GNV em função da frota total de GNV.

|                     | RESUMO        | DOS RESULTADOS        | DA REGRESSÃ    | ÃO          |                        |
|---------------------|---------------|-----------------------|----------------|-------------|------------------------|
| Estatística de      | regressão     |                       |                |             |                        |
| R múltiplo          | 0,99          |                       |                |             |                        |
| R-Quadrado          | 0,98          |                       |                |             |                        |
| R-quadrado ajustado | 0,97          |                       |                |             |                        |
| Observações         | 19            |                       |                |             |                        |
| ANOVA               |               |                       |                |             |                        |
|                     | gl            | SQ                    | MQ             | F           | F de significação      |
| Regressão           | 1             | $3,18.10^{18}$        | $3,18.10^{18}$ | 698,51      | 3,02.10 <sup>-15</sup> |
| Resíduo             | 17            | $7,73.10^{16}$        | $4,55.10^{18}$ |             |                        |
| Total               | 18            | 3,25.10 <sup>18</sup> |                |             |                        |
|                     | Coeficientes  | Erro padrão           | Stat t         | valor-P     | -                      |
| Interseção          | 29.931.490,15 | 21.586.253,37         | 1,39           | 0,183480091 | _                      |
| Frota total de GNV  | 1.771,46      | 67,02620189           | 26,43          | 0,0000      |                        |
|                     |               |                       |                |             | _                      |

A tabela 81 apresenta o consumo estimado de GNV de 2011 a 2030, segundo a regressão apresentada na tabela 80.



Tabela 81 – Estimativa de GNV em m3 para 2011 a 2030.

| ANO  | Consumo de GNV (m <sup>3</sup> ) |
|------|----------------------------------|
| 2011 | 1.168.782.982,34                 |
| 2012 | 1.116.937.205,92                 |
| 2013 | 1.064.809.841,60                 |
| 2014 | 1.013.057.078,74                 |
| 2015 | 962.292.852,94                   |
| 2016 | 913.107.090,64                   |
| 2017 | 865.879.063,57                   |
| 2018 | 821.075.262,01                   |
| 2019 | 779.074.007,19                   |
| 2020 | 740.211.054,31                   |
| 2021 | 704.682.667,02                   |
| 2022 | 672.634.759,87                   |
| 2023 | 644.147.610,15                   |
| 2024 | 619.233.789,87                   |
| 2025 | 597.817.119,65                   |
| 2026 | 579.803.442,48                   |
| 2027 | 565.071.058,92                   |
| 2028 | 553.465.299,46                   |
| 2029 | 544.809.034,33                   |
| 2030 | 538.941.671,77                   |

### 1.2 Estimativa do consumo de gasolina C e etanol hidratado

Para a realização da estimativa de consumo da gasolina C e etanol hidratado, foi utilizado um modelo logit binomial, onde se determina a previsão do percentual estimado de energia (Kcal) para cada combustível. A equação AIX.1 e AIX.2 apresentam o modelo utilizado.

$$P_{gasolina}^{Energia} = \frac{e^{U_{gasolina}}}{e^{U_{gasolina}} + e^{U_{etanol}}} = \frac{1}{1 + e^{U_{etanol}} - U_{gasolina}}$$
(1)

Logo,

$$P_{etanol}^{Energia} = \frac{e^{U_{etanol}}}{e^{U_{gasol ina}} + e^{U_{etanol}}} = \frac{1}{1 + e^{U_{gasolina}} - U_{etanol}}$$
(2)

Onde:  $P_{gasolina}^{Energia}$ : Percentual de poder calorífico em relação ao total, oriundo da gasolina para um determinado ano;



 $P_{etanol}^{Energia}$ : Percentual de poder calorífico em relação ao total, oriundo do etanol em para um determinado ano;

A equação AIX.3 apresenta os detalhes da diferença das funções utilidades utilizada nas equações AIX.1 e AIX.2.

$$U_{gaso\,lina} - U_{etanol} = a.P.frota_{gasolina} + b \tag{3}$$

Onde: a e b: parâmetros;

 $P.frota_{gasolina}$ : Percentual da frota de automóveis e comerciais leves que utilizam gasolina.

Os parâmetros a e b foram ajustados de acordo com as observações dos anos de 1992 a 2010. Para o parâmetro a o valor é -9,605 e para o b é 5,617.

A tabela AIX.7 apresenta os percentuais da frota de automóveis e comerciais leves estimada que utilizam gasolina, a demanda estimada em poder calorífico (energia), a demanda de poder calorífico oriundo de cada combustível e o volume estimado de cada combustível. Para conversão de poder calorífico em volume foi utilizada a tabela AIX.1.



## ANEXO X – DIVISÃO DE CAMINHÕES E ÔNIBUS POR TIPO.

O DETRAN-RJ fornece os dados de caminhões e ônibus de forma agregada, não sendo possível separá-los em caminhões leves, médios e pesados e ônibus urbanos e rodoviários.

Desse modo, para a divisão dos caminhões utilizou-se dados provenientes da Rechder e Fonseca (2003) e ANFAVEA (2010), por meio dos quais foi possível definir um percentual de divisão das vendas de caminhões novos para cada ano do período de 1970 a 2010, conforme Figura 73.

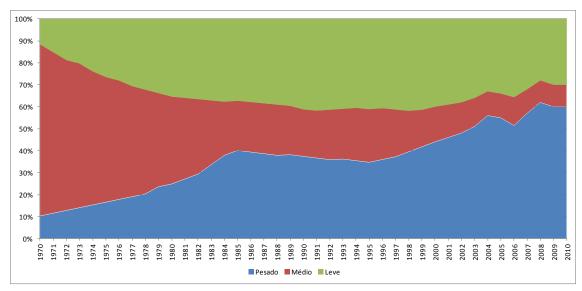



Figura 73: Divisão das vendas de caminhões por tipo.

Para os anos anteriores a 1970 utilizou-se os percentuais relativos ao ano de 1970. Para os anos projetados de 2011 a 2030, foram mantidos os percentuais referentes a 2010, conforme Tabela 82.

Para a divisão dos ônibus em urbanos e rodoviários considerou-se o percentual fornecido pelo inventário de 90% para ônibus urbanos e 10% para ônibus rodoviários.



Tabela 82: Percentuais utilizados para divisão dos caminhões por tipo.

| Ano      | Pesado | Médio | Leve | Ano       | Pesado | Médio | Leve |
|----------|--------|-------|------|-----------|--------|-------|------|
| Até 1970 | 10%    | 78%   | 12%  | 1991      | 37%    | 22%   | 42%  |
| 1971     | 12%    | 73%   | 15%  | 1992      | 36%    | 23%   | 41%  |
| 1972     | 13%    | 68%   | 19%  | 1993      | 36%    | 23%   | 41%  |
| 1973     | 14%    | 66%   | 20%  | 1994      | 35%    | 24%   | 41%  |
| 1974     | 15%    | 61%   | 24%  | 1995      | 35%    | 24%   | 41%  |
| 1975     | 17%    | 57%   | 26%  | 1996      | 36%    | 23%   | 41%  |
| 1976     | 18%    | 54%   | 28%  | 1997      | 37%    | 22%   | 41%  |
| 1977     | 19%    | 50%   | 31%  | 1998      | 39%    | 19%   | 42%  |
| 1978     | 20%    | 47%   | 32%  | 1999      | 42%    | 17%   | 41%  |
| 1979     | 24%    | 43%   | 34%  | 2000      | 44%    | 16%   | 40%  |
| 1980     | 25%    | 40%   | 35%  | 2001      | 46%    | 15%   | 39%  |
| 1981     | 27%    | 37%   | 36%  | 2002      | 48%    | 14%   | 38%  |
| 1982     | 29%    | 34%   | 37%  | 2003      | 51%    | 13%   | 36%  |
| 1983     | 34%    | 29%   | 37%  | 2004      | 56%    | 11%   | 33%  |
| 1984     | 38%    | 24%   | 38%  | 2005      | 55%    | 11%   | 34%  |
| 1985     | 40%    | 23%   | 37%  | 2006      | 52%    | 13%   | 36%  |
| 1986     | 39%    | 23%   | 38%  | 2007      | 57%    | 11%   | 32%  |
| 1987     | 39%    | 23%   | 38%  | 2008      | 62%    | 10%   | 28%  |
| 1988     | 38%    | 23%   | 39%  | 2009      | 60%    | 10%   | 30%  |
| 1989     | 38%    | 22%   | 40%  | De 2010   | 60%    | 10%   | 30%  |
| 1990     | 37%    | 21%   | 41%  | em diante | 00%    | 10/6  | 30/6 |

# ANEXO XI – TABELA DE INTENSIDADE DE USO DE REFERÊNCIA

Tabela 83: Intensidade de uso de referência adotada neste estudo.

|               | Tabela 65. Intensidade de uso de l'elefencia adotada neste estudo. |                                 |                                        |                 |                    |                     |                      |                   |                      |                  |
|---------------|--------------------------------------------------------------------|---------------------------------|----------------------------------------|-----------------|--------------------|---------------------|----------------------|-------------------|----------------------|------------------|
|               | Intensidade de uso por categoria                                   |                                 |                                        |                 |                    |                     |                      |                   |                      |                  |
| Ano de<br>uso | Automóveis                                                         | Veículos<br>comerciais<br>leves | Veículos<br>comerciais<br>leves Diesel | Motocicletas    | Caminhões<br>leves | Caminhões<br>médios | Caminhões<br>pesados | Ônibus<br>urbanos | Ônibus<br>rodoviário | GNV              |
| 430           | 20.000                                                             | 20.000                          | 20.000                                 | 12.000          | 16.530             | 60.000              | 90.000               | 90.000            | 90.000               | 30.000           |
| 0             | 10.000                                                             | 10.000                          | 10.000                                 | 6.000           | 8.265              | 30.000              | 45.000               | 45.000            | 45.000               | 15.000           |
| 1             | 19.400                                                             | 19.400                          | 19.600                                 | 11.600          | 16.199             | 58.800              | 88.200               | 88.200            | 88.200               | 29.100           |
| 2             | 18.800                                                             | 18.800                          | 19.200                                 | 11.200          | 15.868             | 57.600              | 86.400               | 86.400            | 86.400               | 28.200           |
| 3             | 18.200                                                             | 18.200                          | 18.800                                 | 10.800          | 15.537             | 56.400              | 84.600               | 84.600            | 84.600               | 27.300           |
| 4             | 17.600                                                             | 17.600                          | 18.400                                 | 10.400          | 15.207             | 55.200              | 82.800               | 82.800            | 82.800               | 26.400           |
| 5             | 17.000<br>16.400                                                   | 17.000<br>16.400                | 18.000<br>17.600                       | 10.000<br>9.600 | 14.876<br>14.546   | 54.000<br>52.800    | 81.000<br>79.200     | 81.000<br>79.200  | 81.000<br>79.200     | 25.500<br>24.600 |
| 6<br>7        | 15.800                                                             | 15.800                          | 17.800                                 | 9.800           | 14.215             | 51.600              | 77.400               | 77.400            | 79.200               | 23.700           |
| 8             | 15.200                                                             | 15.200                          | 16.800                                 | 8.800           | 13.884             | 50.400              | 75.600               | 75.600            | 75.600               | 22.800           |
| 9             | 14.600                                                             | 14.600                          | 16.400                                 | 8.400           | 13.554             | 49.200              | 73.800               | 73.800            | 73.800               | 21.900           |
| 10            | 14.000                                                             | 14.000                          | 16.000                                 | 8.000           | 13.223             | 48.000              | 72.000               | 72.000            | 72.000               | 21.000           |
| 11            | 13.400                                                             | 13.400                          | 15.600                                 | 7.600           | 12.893             | 46.800              | 70.200               | 70.200            | 70.200               | 20.100           |
| 12            | 12.800                                                             | 12.800                          | 15.200                                 | 7.200           | 12.562             | 45.600              | 68.400               | 68.400            | 68.400               | 19.200           |
| 13            | 12.200                                                             | 12.200                          | 14.800                                 | 6.800           | 12.232             | 44.400              | 66.600               | 66.600            | 66.600               | 18.300           |
| 14            | 11.600                                                             | 11.600                          | 14.400                                 | 6.400           | 11.907             | 43.200              | 64.800               | 64.800            | 64.800               | 17.400           |
| 15            | 11.000                                                             | 11.000                          | 14.000                                 | 6.000           | 11.570             | 42.000              | 63.000               | 63.000            | 63.000               | 16.500           |
| 16            | 10.400                                                             | 10.400                          | 13.600                                 | 5.600           | 11.240             | 40.800              | 61.200               | 61.200            | 61.200               | 15.600           |
| 17            | 9.800                                                              | 9.800                           | 13.200                                 | 5.200           | 10.909             | 39.600              | 59.400               | 59.400            | 59.400               | 14.700           |
| 18            | 9.200                                                              | 9.200                           | 12.800                                 | 4.800           | 10.579             | 38.400              | 57.600               | 57.600            | 57.600               | 13.800           |
| 19            | 8.600                                                              | 8.600                           | 12.400                                 | 4.400           | 10.248             | 37.200              | 55.800               | 55.800            | 55.800               | 12.900           |
| 20            | 8.000                                                              | 8.000                           | 12.000                                 | 4.000           | 10.000             | 36.000              | 54.000               | 54.000            | 54.000               | 12.000           |
| 21            | 7.400                                                              | 7.400                           | 11.600                                 | 3.600           | 10.000             | 34.800              | 52.200               | 52.200            | 52.200               | 11.100           |
| 22            | 6.800                                                              | 6.800                           | 11.200                                 | 3.200           | 10.000             | 33.600              | 50.400               | 50.400            | 50.400               | 10.200           |
| 23            | 6.200                                                              | 6.200                           | 10.800                                 | 2.800           | 10.000             | 32.400              | 48.600               | 48.600            | 48.600               | 9.300            |
| 24            | 5.600                                                              | 5.600                           | 10.400                                 | 2.400           | 10.000             | 31.200              | 46.800               | 46.800            | 46.800               | 8.400            |
| 25            | 5.000                                                              | 5.000                           | 10.000                                 | 2.000           | 10.000             | 30.000              | 45.000               | 45.000            | 45.000               | 7.500            |
| 26            | 4.400<br>3.800                                                     | 4.400<br>3.800                  | 10.000<br>10.000                       | 2.000<br>2.000  | 10.000<br>10.000   | 28.800<br>27.600    | 43.200<br>41.400     | 43.200<br>41.400  | 43.200<br>41.400     | 6.600<br>5.700   |
| 27<br>28      | 3.800                                                              | 3.200                           | 10.000                                 | 2.000           | 10.000             | 26.400              | 39.600               | 39.600            | 39.600               | 4.800            |
| 29            | 2.600                                                              | 2.600                           | 10.000                                 | 2.000           | 10.000             | 25.200              | 37.800               | 37.800            | 37.800               | 3.900            |
| 30            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 24.000              | 36.000               | 36.000            | 36.000               | 3.000            |
| 31            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 22.800              | 34.200               | 34.200            | 34.200               | 3.000            |
| 32            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 21.600              | 32.400               | 32.400            | 32.400               | 3.000            |
| 33            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 20.400              | 30.600               | 30.600            | 30.600               | 3.000            |
| 34            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 19.200              | 28.800               | 28.800            | 28.800               | 3.000            |
| 35            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 18.000              | 27.000               | 27.000            | 27.000               | 3.000            |
| 36            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 16.800              | 25.200               | 25.200            | 25.200               | 3.000            |
| 37            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 15.600              | 23.400               | 23.400            | 23.400               | 3.000            |
| 38            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 14.400              | 21.600               | 21.600            | 21.600               | 3.000            |
| 39            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 13.200              | 19.800               | 19.800            | 19.800               | 3.000            |
| 40            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 12.000              | 18.000               | 18.000            | 18.000               | 3.000            |
| 41            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 10.800              | 16.200               | 16.200            | 16.200               | 3.000            |
| 42            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 9.600               | 14.400               | 14.400            | 14.400               | 3.000            |
| 43            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 8.571               | 12.600               | 12.600            | 12.600               | 3.000            |
| 44            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 8.571               | 10.800               | 10.800            | 10.800               | 3.000            |
| 45            | 2.000<br>2.000                                                     | 2.000                           | 10.000<br>10.000                       | 2.000<br>2.000  | 10.000<br>10.000   | 8.571<br>8.571      | 9.000<br>7.200       | 10.000<br>10.000  | 9.000<br>7.200       | 3.000            |
| 46            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             |                     |                      | 10.000            | 7.200<br>5.400       |                  |
| 47            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 8.571<br>8.571      | 6.667<br>6.667       | 10.000            | 3.600                | 3.000            |
| 48<br>49      | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 8.571               | 6.667                | 10.000            | 3.600                | 3.000            |
| 50            | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 8.571               | 6.667                | 10.000            |                      | 3.000            |
|               | 2.000                                                              | 2.000                           | 10.000                                 | 2.000           | 10.000             | 0.5/1               | 0.007                | 10.000            | 5.000                | 5.000            |



# ANEXO XII – CONSUMO DE COMBUSTÍVEL OBSERVADO PARA O ESTADO DO RIO DE JANEIRO

Os valores referentes ao consumo observados de gasolina C e etanol anidro foram obtidos por meio de dados da ANP (2011). Em relação ao consumo de etanol hidratado, verificou-se que os valores referentes ao período de 1980 a 1982 apresentavam-se muito acima do consumo calculado.

Acredita-se que tal fato possa estar associado a existência, nesse período, de caminhões e ônibus movidos a etanol (os quais não foram considerados neste estudo conforme ANEXO I). Sendo assim, em virtude da incerteza de tais dados, e com o intuito de minimizar os erros referentes ao ajuste da intensidade de uso, foi realizado um acerto no consumo observado de tal período com base na relação consumo observado/consumo calculado do restante do período.

O mesmo procedimento foi realizado para o consumo observado de GNV referente ao ano de 1992.



Tabela 83: Consumo observado de Gasolina C, etanol hidratado, diesel e GNV.

| Ano  |               | m3/Ano                               |               |               |
|------|---------------|--------------------------------------|---------------|---------------|
| ŽIIO | Gasolina      | Etanol                               | Diesel        | GNV           |
| 1980 | 1.740.171.000 | 27.710.089                           | 1.149.500.000 | -             |
| 1981 | 1.551.013.000 | 76.613.870                           | 1.058.600.000 | -             |
| 1982 | 1.608.358.000 | 130.302.450                          | 1.028.700.000 | -             |
| 1983 | 1.436.392.000 | 252.900.991                          | 1.027.300.000 | -             |
| 1984 | 1.271.543.000 | 445.163.916                          | 975.000.000   | -             |
| 1985 | 1.225.367.000 | 646.479.962                          | 976.800.000   | -             |
| 1986 | 1.312.527.000 | 880.397.000                          | 1.109.000.000 | -             |
| 1987 | 1.149.610.000 | 979.801.000                          | 1.186.300.000 | -             |
| 1988 | 1.086.040.000 | 1.104.443.000                        | 1.207.200.000 | -             |
| 1989 | 1.371.838.493 | 1.215.364.791                        | 1.281.600.000 | -             |
| 1990 | 1.321.613.119 | 1.300.553.696                        | 1.216.700.000 | -             |
| 1991 | 1.413.856.087 | 1.139.322.945                        | 1.299.000.000 | -             |
| 1992 | 1.276.828.572 | 997.139.420                          | 1.233.700.000 | 1.192.258     |
| 1993 | 1.424.388.949 | 24.388.949 946.225.349 1.255.600.000 |               | 11.400.000    |
| 1994 | 1.566.190.287 | 949.043.317                          | 1.346.900.000 | 22.200.000    |
| 1995 | 1.873.926.169 | 936.703.188                          | 1.414.300.000 | 22.800.000    |
| 1996 | 2.178.531.149 | 887.970.060                          | 1.504.600.000 | 17.300.000    |
| 1997 | 2.275.770.291 | 718.000.822                          | 1.574.600.000 | 27.000.000    |
| 1998 | 2.256.054.531 | 524.663.823                          | 1.637.000.000 | 58.000.000    |
| 1999 | 2.032.758.193 | 477.278.353                          | 1.666.000.000 | 91.000.000    |
| 2000 | 1.847.747.041 | 231.707.637                          | 1.642.700.000 | 169.000.000   |
| 2001 | 1.772.336.569 | 155.572.409                          | 1.733.300.000 | 296.000.000   |
| 2002 | 1.971.934.247 | 157.566.839                          | 1.791.900.000 | 421.000.000   |
| 2003 | 1.764.595.106 | 98.177.866                           | 1.457.000.000 | 535.000.000   |
| 2004 | 1.848.172.403 | 109.816.563                          | 1.486.600.000 | 635.000.000   |
| 2005 | 1.739.318.622 | 180.528.029                          | 1.507.000.000 | 785.000.000   |
| 2006 | 1.660.802.986 | 224.254.942                          | 1.636.400.000 | 958.000.000   |
| 2007 | 1.635.151.708 | 359.404.270                          | 1.816.200.000 | 1.087.000.000 |
| 2008 | 1.616.429.481 | 677.059.602                          | 1.945.400.000 | 1.061.000.000 |
| 2009 | 1.636.890.677 | 872.813.849                          | 1.997.700.000 | 977.000.000   |
| 2010 | 1.867.262.452 | 746.457.536                          | 2.032.908.464 | 969.000.000   |



# ANEXO XIII – RENDIMENTO DOS VEÍCULOS CONSIDERADOS NESTE ESTUDO

A Tabela 84 apresenta os valores de rendimento por ano- modelo do veículo para automóveis e comerciais leves do ciclo Otto.

Tabela 84: Rendimento dos automóveis e comerciais leves do ciclo Otto.

| Ano               |            | Automóveis | e comerciais leve | s - ciclo Otto |       |
|-------------------|------------|------------|-------------------|----------------|-------|
| Allo              | Gasolina C | Etanol     | Flex Gasolina C   | Flex Etanol    | GNV   |
| Até 1980          | 8,90       | 7,10       |                   |                |       |
| 1981              | 8,90       | 7,10       |                   |                |       |
| 1982              | 9,65       | 7,90       |                   |                |       |
| 1983              | 10,19      | 8,25       |                   |                |       |
| 1984              | 10,39      | 8,54       |                   |                |       |
| 1985              | 10,42      | 8,46       |                   |                |       |
| 1986              | 10,64      | 8,52       |                   |                |       |
| 1987              | 10,86      | 8,58       |                   |                |       |
| 1988              | 11,07      | 8,65       |                   |                |       |
| 1989              | 11,82      | 8,65       |                   |                |       |
| 1990              | 11,82      | 8,65       |                   |                |       |
| 1991              | 10,98      | 8,01       |                   |                |       |
| 1992              | 10,98      | 8,54       |                   |                | 12,00 |
| 1993              | 10,04      | 7,54       |                   |                | 12,00 |
| 1994              | 10,04      | 7,54       |                   |                | 12,00 |
| 1995              | 11,04      | 7,17       |                   |                | 12,00 |
| 1996              | 11,04      | 7,17       |                   |                | 12,00 |
| 1997              | 11,82      | 7,41       |                   |                | 12,00 |
| 1998              | 11,82      | 8,01       |                   |                | 12,00 |
| 1999              | 11,89      | 6,96       |                   |                | 12,00 |
| 2000              | 11,97      | 6,96       |                   |                | 12,00 |
| 2001              | 10,90      | 7,20       |                   |                | 12,00 |
| 2002              | 11,20      | 7,50       | 10,30             | 6,90           | 12,00 |
| 2003              | 11,40      | 8,60       | 10,80             | 7,30           | 12,00 |
| 2004              | 11,30      | 8,60       | 11,50             | 7,70           | 12,00 |
| 2005              | 11,30      | 6,90       | 11,70             | 7,80           | 12,00 |
| 2006              | 11,30      | 6,90       | 11,70             | 7,80           | 12,00 |
| 2007              | 9,74       | 6,90       | 11,70             | 7,38           | 12,00 |
| 2008              | 9,50       | 6,90       | 12,00             | 8,00           | 12,00 |
| 2009              | 9,50       | 6,90       | 12,00             | 8,00           | 12,00 |
| De 2010 em diante | 9,50       | 6,90       | 12,00             | 8,00           | 12,00 |

Fonte: MMA (2011).

Para motocicletas e veículos do ciclo Diesel foram considerados os valores conforme Tabelas 85 e 86.



Tabela 85: Rendimento das motocicletas.

| Motocicleta |                      |                            |  |  |  |
|-------------|----------------------|----------------------------|--|--|--|
| Gasolina C  | Flex /<br>Gasolina C | Flex / Etanol<br>Hidratado |  |  |  |
| 40 km/l     | 40 km/l              | 25 km/l                    |  |  |  |

Fonte: MMA (2011).

Tabela 86: Rendimento dos veículos do ciclo Diesel.

| Comercial Leve | Caminhão Leve | Caminhão Médio | Caminhão Pesado | Ônibus Urbano | Ônibus Rodoviário |
|----------------|---------------|----------------|-----------------|---------------|-------------------|
| 9,09 km/l      | 3,9 km/l      | 3,04 km/l      | 2,61 km/l       | 2,3 km/l      | 3,03 km/l         |

Fonte: MMA (2011), Cachiolo (2011) e AMBEV (2011).



#### ANEXO XIV - LIMITES DO PROCONVE E DO PROMOT

Este anexo apresenta os limites de emissão referentes ao Programa de Controle da Poluição do Ar por Vecículos Automotores (PROCONVE), que foi criado pelo Conselho Nacional do Meio Ambiente (Conama) em 1986, pela Resolução nº 18/86. Tal programa tinha por objetivo a redução das emissões de poluentes de veículos novos com foco no atendimento aos padrões nacionais de qualidade ambiental vigentes.

Sendo assim, foi estabelecido um padrão de implantação progressiva de fases de modo que a indústria automobilística e os fornecedores de combustíveis pudessem se adaptar gradativamente. A Tabela 87 apresenta os limites de emissões em g/kWh para os veículos do ciclo Diesel. Os limites de emissão referentes aos veículos do ciclo Otto encontram-se detalhados na Tabela 88.

Tabela 87: Limites do PROCONVE para veículos do ciclo Diesel.

| Proconve                  | Euro       | со        | нс       | NOx               | MP                           | Norma<br>(Conama) | Teor de enxofre       |
|---------------------------|------------|-----------|----------|-------------------|------------------------------|-------------------|-----------------------|
| Fase I (P1)               | Sem espec. | $14,00^2$ | $3,50^2$ | 18,0 <sup>2</sup> | -                            | Res. 18/86        | -                     |
| Fase II (P2)              | Euro 0     | 11,20     | 2,45     | 14,40             | $0,60^2$                     | Res. 08/93        | 3.000 a 10.000<br>ppm |
| Fase III (P3)             | Euro 1     | 4,90      | 1,23     | 9,00              | 0,40 ou<br>0,70 <sup>1</sup> | Res. 08/93        | 3.000 a 10.000<br>ppm |
| Fase IV (P4)              | Euro 2     | 4,00      | 1,10     | 7,00              | 0,15                         | Res. 08/93        | 3.000 a 10.000<br>ppm |
| Fase V (P5)               | Euro 3     | 2,10      | 0,66     | 5,00              | 0,10 ou<br>0,13 <sup>2</sup> | Res. 315/02       | 500 a 2.000 ppm       |
| Fase VI (P6) <sup>3</sup> | Euro 4     | 1,50      | 0,46     | 3,50              | 0,02                         | Res. 315/02       | 50 ppm                |
| Fase VII (P7)             | Euro 5     | 1,50      | 0,46     | 2,00              | 0,02                         | Res. 403/08       | 10 ppm                |

 <sup>0,70</sup> para motores até 85 kW e 0,40 para motores com mais de 85 kW; (2) não foram exigidos legalmente;
 Não chegou a ser implantada.

Tabela 88: Limites do PROCONVE, em g/km, para veículos do ciclo Otto.

|     | L1  | L2   | L3   | L4   | L5   | L6   |
|-----|-----|------|------|------|------|------|
| CO  | 24  | 12   | 2    | 2    | 2    | 1,3  |
| HC  | 2,1 | 1,2  | 0,3  | 0,16 | 0,05 | 0,05 |
| NOx | 2   | 1,4  | 0,6  | 0,25 | 0,12 | 0,08 |
| СНО | -   | 0,15 | 0,03 | 0,03 | 0,02 | 0,02 |

Fonte: INEA (2011)

No caso das motocicletas, considera-se os limites estabelecidos pelo PROMOT, conforme Tabela 89.



Tabela 89: Limites de emissão do PROMOT para motocicletas (g/km).

|             | M1   | M2       |          | M3       |          |  |
|-------------|------|----------|----------|----------|----------|--|
| Cilindradas | -    | < 150 cc | ≥ 150 cc | < 150 cc | ≥ 150 cc |  |
| CO          | 13,0 | 5        | ,5       | 2,0      |          |  |
| НС          | 3,00 | 1,20     | 1,00     | 0,80     | 0,20     |  |
| NOx         | 0,30 | 0,30     |          | 0,15     |          |  |

Fonte: INEA (2011)