5º Workshop Cenários Prospectivos para Uso de Energia em Transportes

O papel dos biocombustíveis na transição energética

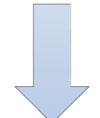
Mariane Gonzalez da Costa

_aboratório de

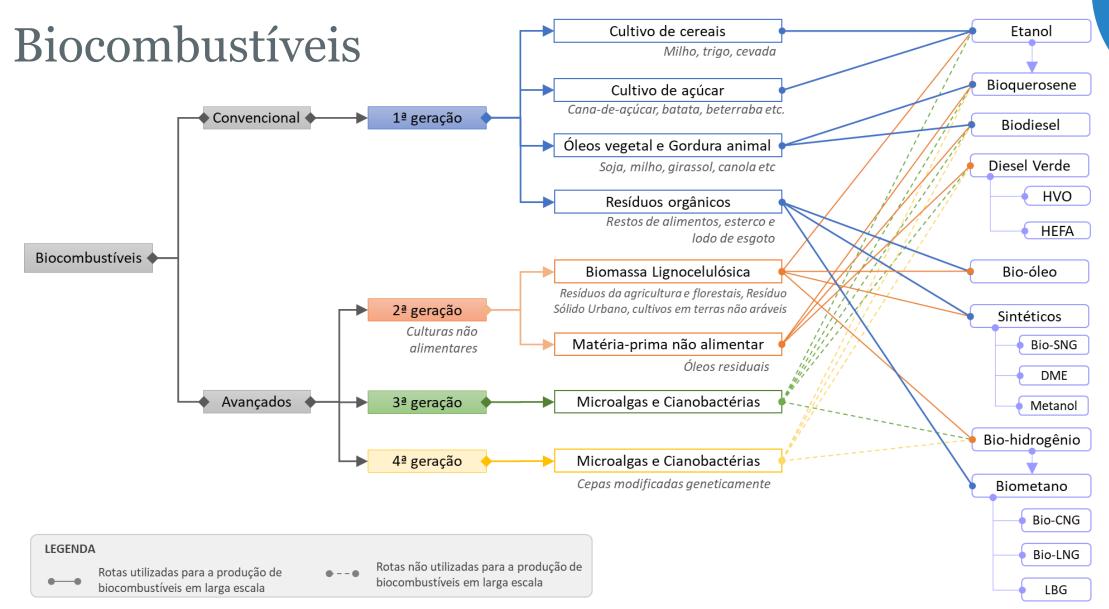
Produção de biodiesel via rota enzimática

- Estudo de pré-viabilidade econômico-financeira e ambiental do aumento da escala da produção de biodiesel a partir do óleo residual da produção de etanol de milho via rota enzimática
- ✓ Integrar a produção de etanol de milho e de biodiesel
- ✓ TRL 3 4
- Estudo realizado pelo Laboratório de Transporte de Cargas
- Testes realizados no Centro de Pesquisas e Caracterização do Petróleo e Combustíveis - Coppecomb
- Estudo em parceria com a CESBRA

Produção de biodiesel via rota enzimática



- Rota enzimática em duas etapas
- Recuperação
 - Enzima
 - Álcool metanol e/ou etanol
- ✓ Integração das produções → menor impacto no uso do solo



Não necessita de pré-tratamento do óleo residual

Custo da enzima

Principais matérias-primas para a produção de biocombustíveis convencionais e avançados

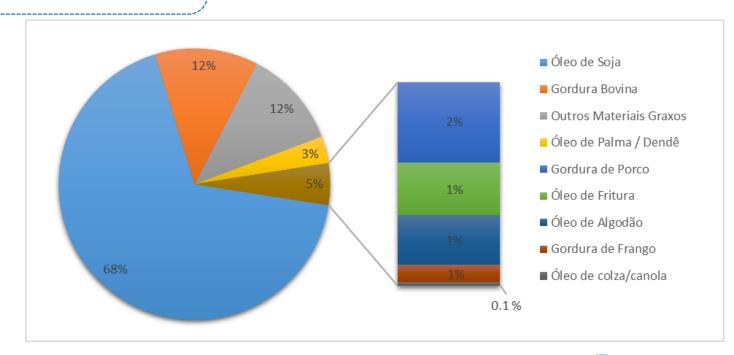
Fonte: Elaborado pela autora, com base em (Carvalho et al., 2021; IEA, 2011; Maurya et al., 2021; Panoutsou et al., 2021; Sonthalia e Kumar, 2019)

Grau de maturidade tecnológica

TRL	Escala	Ambiente	Descrição		
TRL 1	Teórica		Princípios básicos observados e reportados		
TRL 2	Teórica		Concepção tecnológica e/ou aplicação formulada		
TRL 3	Analítica/ laboratorial	Simulado	Testes analíticos e/ou experimenta realizados		
TRL 4	Laboratorial Teste de bancada	Simulado	Validação de produção da tecnologia em ambiente laboratorial, com proposição de rotas de reação.		
TRL 5	Laboratorial Teste de bancada	Relevante	Validação de produção da tecnologia em laboratório. Aperfeiçoamento de técnicas. Regressão de dados para mecanismos cinéticos propostos.		
TRL 6	Piloto	Relevante	Produtos validados e mecanismos cinéticos demonstrados em uma planta piloto, com baixa taxa de produção. Operação contínua.		
TRL 7	Operação industrial	Relevante	Demonstração do protótipo do sistema em ambiente operacional com alta taxa de produção		
TRL 8	Operação industrial	Operacional Alcance limitado	Processo de produção estabelecido e qualificado como tecnicamente praticável		
TRL 9	Operação industrial	Operacional Alcance completo	Processo de produção comprovadamente técnica e economicamente viável		

Níveis de Maturidade adaptados para a produção de biocombustíveis

Fonte: Elaboração própria com base em (Beims et al., 2019)



Matéria-prima	Rota/Processo de conversão	Tipo de Biocombustível	Uso em Transporte	TRL	Modo
Açúcar de cana-de-açúcar, beterraba, batata etc.	Fermentação	Etanol	Etanol Anidro: mistura a gasolina E5 e E10 (<i>drop-in</i>) e E27 (pequenas modificações no motor)	Comercial	Rodoviário e Aéreo
Amido de milho, trigo, cevada			Dedicado - Flexible-fuel		Rodoviário
Óleos Vegetais de soja, milho, girassol etc. Gordura animal	Transesterificação ou Esterificação	Biodiesel	Mistura com diferentes percentuais no diesel	Comercial	Rodoviário Ferroviário
	Hidrólise enzimática e fermentação	Etanol celulósico	Mistura a gasolina	8 - 9	Rodoviário e Aéreo
Diamaga lignacalulásica Dagáduag da	Gaseificação + síntese catalítica	Bio-SNG, DME, Bio-Metanol	Misturas ao diesel, gasolina, bunker ou diretamente no motor (d <i>ual-fuel</i>)	6 - 7	Rodoviário Ferroviário Aéreo e aquático
Biomassa lignocelulósica - Resíduos da agricultura e florestais, Resíduo Sólido	Gaseificação + FT-BtL	FT-SPK	Mistura de até 50%	6 - 8	Aéreo
Urbano, cultivos em terras não aráveis		FT-SPKA	Mistura de até 50%		
orbano, carrivos em terras nas araveis		Nafta, Diesel			Aquático
	Digestão anaeróbica + FT BioGtL	FT-SPK	Mistura de até 50%		Aéreo
		FT-SPKA	Mistura de até 50%		A (1:
		Nafta, Diesel	-		Aquático
→ Etanol / Isobutanol	ATJ - Álcool para Bioquerosene	ATJ-SPK	Mistura de até 50%	7 - 8	Aéreo
	Transesterificação ou Esterificação	Biodiesel de óleo residual	Mistura ao diesel BXX	Comercial	Rodoviário e Ferroviário
Óleos Residuais, Gordura animal, efluentes líquidos	Hidrotratamento	HVO	Drop-in, Mistura ao diesel ou uso direto no motor (diesel); SAF	Comercial	Rodoviário, Aquático e Aéreo
•	Hidrotratamento	HEFA ⁴	Mistura de até 50% ao querosene de aviação (SAF)	Comercial	Aéreo
Resíduos orgânicos - restos de alimentos esterco e lodo de esgoto Resíduos de Aterro Sanitário	, Gaseificação + purificação	Bio-CNG, Bio-LNG LBG	Veículos dedicados ou misturado na rede de distribuição de gás	-	Rodoviário e Aquático
Óleos provenientes da Pirólise ou <i>Biocrudes</i> provenientes de matéria	Pirólise ou Liquefação + Hidrotratamento	Bio-óleo hidrohidratado/ Biocrude	<i>Drop-in</i> ou mistura com o diesel, bunker, gasolina	4 - 5	Rodoviário e Aquático
lignocelulósica, Resíduo Sólido Urbano; Resíduos Sólidos	Coprocessamento em refinarias de petróleo	Bio-óleo de coprocessamento/ Biocrude	Drop-in ou mistura com o diesel, bunker, gasolina	7 - 8	Rodoviário e Aquático

Brasil

- ✓ Investimento em biocombustíveis
 - ✓ Programa Nacional do Álcool Proálcool
 - ✓ Programa Nacional de Produção e Uso de Biodiesel

Matérias-primas utilizadas na produção de biodiesel no Brasil, em dezembro de 2018

Fonte: Adaptado de (ANP, 2019)

Brasil

Programa Nacional da Racionalização do Uso dos Derivados do Petróleo e do Gás Natural (CONPET)

> Programa Brasileiro de Etiquetagem Veicular (PBEV - INMETRO)

Intensidade de Carbono em 10% até 2030

Certificação da produção de biocombustíveis

Créditos de descarbonização (CBio)

Programa Nacional de Produção e Uso do Biodiesel (PNPB)

Programa Combustível do Futuro

RenovaBio

Resolução nº 7/2021

Integração das Políticas Públicas

Programa de Controle da Poluição do Ar por Veículos Automotores (Proconve)

Mobilidade Verde Mover

Programa Rota 2030

Brasil

Pontos de incentivo

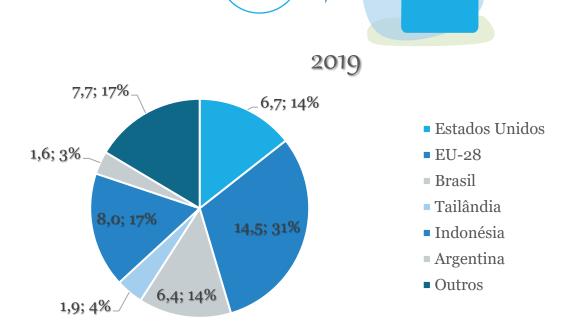
- ✓ Viabilização de tecnologia de célula a combustível a partir da utilização do etanol;
- ✓ avaliação das condições para incorporação de querosene de aviação sustentável;
- √ definição de estratégia nacional para combustíveis sustentáveis no transporte marítimo; e
- ✓ Estabelecimento de diretrizes para tecnologia de captura e armazenamento de carbono relacionadas à produção de biocombustíveis

Programa Nacional de Combustível Sustentável de Aviação (ProBioQAv)

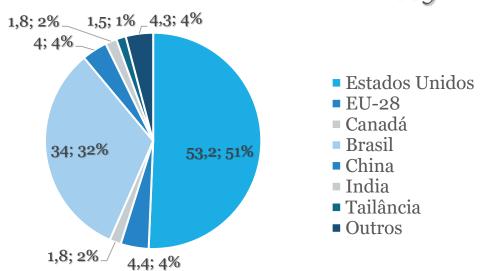
- ✓ Incentivo da produção e uso de SAF
- ✓ Mandato Meta de redução de 1% das emissões de CO₂ das operações domésticas por meio da mistura de SAF ao querosene de aviação.
 - ✓Início em 2027 e prazo em 2037.
 - ✓ Promover a competição entre as rotas, de forma que prevaleça aquela com maior eficiência energético-ambiental para o alcance das metas (FGV, 2023).

Demanda de energia do setor de Transportes

32% total de energia final consumido no mundo


3,3%

Mundo


Energias renováveis no transporte

3,7%

Maiores produtores de Etanol do mundo no ano de 2020, em bilhões de litros

5º WCPUET Fonte: Elaboração própria com base em (REN21, 2021)

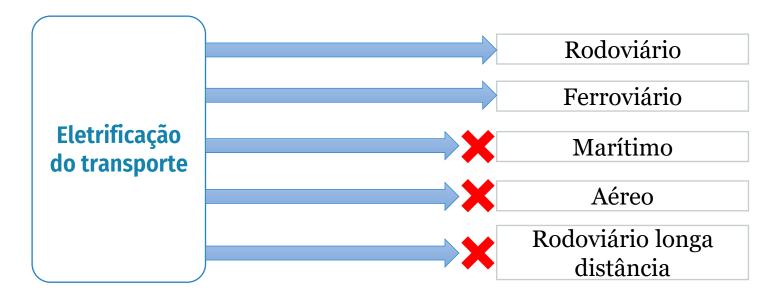
Fonte: Elaboração própria com base em (REN21, 2021)

Maiores produtores de Biodiesel do mundo no

ano de 2020, considerando HVO, em bilhões

de litros

Mundo


- ✓ **EUA** maior produtor de Etanol milho → diversificar as rotas → produção de biocombustíveis avançados
- ✓ Renewable Fuel Standard (RFS) Política de incentivo ao mercado de biocombustíveis
- ✓ Segundo maior produtor de HVO
- ✓ Manutenção de uma mistura de 10% de etanol na gasolina deve impedir um crescimento acentuado do consumo de etanol

- ✓ **UE** maior produtor de Biodiesel e HVO Alemanha
- ✓ A Diretiva de Energia Renovável (REDII) introduziu uma meta de 14% de participação de energias renováveis no transporte para 2030.
 - ✓ <u>Sub meta</u> → participação de 3,5% de óleo residual e gorduras animais até 2030
- ✓ REDII também estabelece limites para biocombustíveis com riscos de mudanças indiretas no uso do solo
 - ✓ Importação não será contabilizado na participação de energias renováveis
 - ✓ A partir de 2024, os biocombustíveis de biomassa produzidos a partir de culturas de alimentos ou rações que apresentam impacto ILUC deverão ser reduzidos a zero até 2030

Uso de biocombustíveis x eletrificação do setor de

transporte

Idade média das embarcações e aeronaves favorece o uso de biocombustíveis

Mudança de tecnologia de sistema de propulsão, se houver, apenas no longo prazo.

Embarcações

Aeronaves

Idade média da Frota cerca de 15 anos Tempo médio de vida de 40 anos

Idade média da Frota 11 anos Tempo média de vida em média 25 a 30 anos

Fonte: SZKLO et al. (2021)

Aviação

- ✓ Representa 2% das emissões de CO2 global relacionados ao setor de energia
- ✓ A Associação Internacional de Transporte Aéreo IATA estabeleceu um crescimento neutro de carbono a partir de 2020, com objetivo de zerar as emissões líquidas de CO₂ até 2050 em relação aos níveis de 2005
 - ✓ Sustainable Aviation Fuel SAF são fundamentais para reduzir as emissões de carbono por esse modo (IEA, 2019c)
 - ✓ Para alcançar esse objetivo, deverá ser adotada uma participação de 65% de SAF dentro de um conjunto de estratégias, como captura de carbono, novas tecnologias, aumento da eficiência operacional, entre outros.
- ✓ Baixa participação de biocombustíveis no querosene de aviação < 0,1% → altos padrões de segurança e compatibilidade de aeronaves e infraestrutura de reabastecimento, sendo utilizados apenas SAF com excelente desempenho em motores a jato são aprovados por normas e regulamentos, como ASTM D7566 (PANOUTSOU et al., 2021).

Marítimo

Organização Internacional Marítima - IMO Reduzir emissões em

20% - 30% 70% - 80%

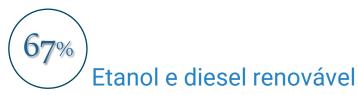
Até 2030

Até 2040

em comparação com 2008

Net Zero

Alcançar emissões zero ou quase zero até 2050 em comparação com 2008


- ✓ IMO aponta para o uso de biocombustíveis, sobretudo daqueles com características drop-in capazes de serem utilizados na frota existente → produção desses biocombustíveis seja sustentável
- ✓ Novas tecnologias, combustíveis ou fontes de energia com emissão nula representando 5%, com ambição de alcançar 10%, da energia utilizada no transporte marítimo internacional até 2030

Uso de multicombustíveis: as principais alternativas incluem biometano, e-metano, biometanol, e-metanol, amônia azul, e-amônia, bio-óleos e e-diesel -> todas as alternativas enfrentam desafios técnicos, de segurança, comerciais e regulamentares (MÆRSK MC-KINNEY MØLLER CENTER FOR ZERO CARBON SHIPPING, 2022)

Panorama do futuro dos biocombustíveis Mundo

demanda de biocombustíveis 28% Até 2028

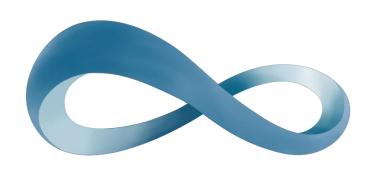
biodiesel e BioQAv

✓ A maioria da nova demanda por biocombustíveis vem de economias emergentes, especialmente **Brasil**, Indonésia **e Índia**, com políticas robustas, aumento na demanda por combustíveis de transporte e abundância de matéria-prima.

G20Global Biofuel Alliance


Até 2028

- 1% do suprimento global de combustível de aviação, com os Estados Unidos, Europa e Japão liderando esse crescimento
- As políticas de incentivo, como créditos IRA, RINs do Renewable Fuel Standard e créditos LCFS, ajudam a impulsionar a demanda por BioQAv nos EUA, enquanto na Europa, a legislação ReFuelEU Aviation eleva a participação de BioQAv para 4% da demanda de combustível de aviação até 2028.
- A produção de biocombustíveis deve ser expandida para atender às metas de emissão de carbono e de segurança energética, com a necessidade de aumentar a disponibilidade de matéria-prima e acelerar o uso de tecnologias de processamento
- **NetZero** → Produção global de biocombustíveis sustentáveis precisaria **triplicar** até 2030 para colocar o sistema de energia mundial no caminho das emissões líquidas zero até 2050.



Formulário

https://forms.gle/txy437tvdgPdJJbQA

5º WCPUET

Laboratório de Transporte de Carga

Universidade Federal do Rio de Janeiro

Mariane Gonzalez da Costa

mariane.gonzalez@pet.coppe.ufrj.br