





# NOTA TÉCNICA

Visão dos Especialistas para a Descarbonização do Transporte Rodoviário de Longa Distância Brasileiro: Impactos, Desafios e Oportunidades.

Setembro de 2025



#### Produto elaborado para:

Instituto Clima e Sociedade - iCS

#### **Projeto**

Roadmap para a Descarbonização do Transporte Rodoviário de Longa Distância, Marítimo e Aéreo de Cargas no Brasil.

#### Coordenação

Suzana Kahn Ribeiro

#### **Equipe Técnica**

Márcio de Almeida D'Agosto Lino Guimarães Marujo Daniel Neves Schmitz Gonçalves Lorena Mirela Ricci

#### Revisão Técnica

Carine Lacerda Tamar Roitman

#### Design Gráfico e Diagramação:

Vitor Olavo de Oliveira Castro Moreira Lyvia Costa dos Santos













## **Resumo Executivo**

Esta nota técnica, sumariza a visão de especialistas do setor de transporte sobre as medidas mais prováveis e as prioridades de investimento e políticas públicas para a descarbonização do transporte rodoviário de longa distância no Brasil. Analisa a probabilidade de adoção de diferentes tecnologias e combustíveis (elétricos à bateria, híbridos, gás, biodiesel, diesel verde etc.), a importância de práticas de eficiência e otimização operacional e os principais riscos e barreiras percebidos.











### 1. INTRODUÇÃO

Com o crescimento demográfico e econômico, a atividade de transportes deve aumentar, o que pode elevar a demanda de energia e as emissões de gases de efeito estufa (GEE). Assim, a descarbonização do setor de transportes é um desafio a ser enfrentado para limitar as mudanças do clima (Gonçalves, 2022), uma vez que o setor de transportes é um dos principais consumidores de combustíveis fósseis, utilizando cerca de 95% dos derivados de petróleo ofertados no mundo (IEA, 2023).

Globalmente, as emissões diretas do setor de transporte foram de cerca de 8,9 GtCO<sub>2e</sub> em 2019, correspondendo a cerca de 15% do total de emissões de GEE e 23% das emissões de CO<sub>2</sub> relacionadas à energia, sendo a maior fonte de emissões do setor. Destaca-se que o transporte rodoviário é responsável por 6,1 GtCO<sub>2e</sub> (69% do total). O transporte marítimo internacional e a aviação internacional são responsáveis, respectivamente, por 0,8 GtCO<sub>2e</sub>(9%) e 0,6 GtCO<sub>2e</sub> (7%). As emissões do transporte rodoviário cresceram a uma taxa de 1,7% entre 2010 e 2019 e as da aviação internacional cresceram 3,4% ao ano, de acordo com a rápida expansão da atividade de transporte no globo, que cresceu 73% entre 2000 e 2018. O transporte de carga, em particular, cresceu 68% entre 2000 e 2015 e deve triplicar até 2050 com as cadeias de suprimentos globais e o comércio internacional, o que torna a descarbonização deste segmento particularmente desafiadora (IPCC, 2022).

Em 2023 no Brasil, o setor de transportes representou cerca de 1/3 do consumo final de energia, sendo que apenas 22,5% da sua matriz energética veio de fontes renováveis (EPE, 2024), além disso, o setor de transportes foi responsável por 44% das emissões de  $\rm CO_{2e}$  do setor energético (SEEG, 2024), o que leva a necessidade de pensar em várias soluções, sem exclusão obrigatória do fóssil, para a descarbonização deste setor, ainda mais se considerarmos que houve um crescimento de 47% do transporte de carga no Brasil de 2005 a 2015 (GONÇALVES e D'AGOSTO, 2017).

O Brasil, com sua vasta extensão territorial e economia diversificada, depende fortemente do transporte rodoviário para cargas pesadas. Ao contrário dos modos aquático e aéreo, que têm metas estabelecidas para a descarbonização, o transporte rodoviário ainda não possui metas para reduzir suas emissões de carbono.

Portanto, é necessário a criação de roadmaps realistas para a transição energética dos diversos segmentos do setor, com base no princípio de políticas "sem arrependimentos", sendo monitoradas, verificadas e reportadas regularmente as condições de mercado e inovações tecnológicas, além de evitar políticas que promovam bloqueios tecnológicos (*lock-in*), promovendo a competição entre as rotas tecnológicas (EPE, 2024).

Dessa forma, esta nota técnica tem como objetivo apresentar os resultados preliminares do projeto de pesquisa "Roadmap para a Descarbonização do Transporte Rodoviário de Longa Distância, Marítimo e Aéreo de Cargas no Brasil" conduzido pelo Laboratório de Transporte de Carga (LTC) da COPPE/UFRJ com apoio do Instituto Clima e Sociedade (iCS), analisando, a partir de uma síntese da visão de especialistas do setor de qual serão as rotas e estratégias possivelmente adotadas para a descarbonização, fornecendo um panorama das perspectivas e dos caminhos a serem seguidos para a transição energética e tecnológica do transporte rodoviário de longa distância.



#### 2. METODOLOGIA



Foi aplicada uma <u>pesquisa</u> estruturada com especialistas (7) selecionados do presente modo de transporte, que atuam nas áreas de logística siderúrgica, tecnologia da informação, transporte rodoviário de cargas, logística de papel e celulose, energia (distribuição de combustíveis), logística e transporte e representação setorial, onde foi apresentado o contexto do projeto na qual a pesquisa está inserida e do modo a ser avaliado. Os questionamentos incluídos na pesquisa foram baseados nos resultados obtidos à partir de uma revisão bibliográfica narrativa e documental, onde foram mapeadas as tendências nacionais e mundiais quanto a transição energética e tecnológica do transporte de carga (rodoviário de longa distância, marítimo e aéreo) e também dos resultados obtidos a partir do 5º Workshop Cenários Prospectivos para Uso de Energia em Transportes (WCPUET) (COSTA, 2024).

As perguntas do questionário foram do tipo escala de Likert para a probabilidade de uso das medidas de descarbonização (1 - pouco provável, 2 - menos provável, 3 - provável, 4 - mais provável e 5 - muito provável), relevância das barreiras para implementação das alternativas de descarbonização (barreira não relevante, pouco relevante, relevante, muito relevante e barreira crítica) e relevância das estratégias de descarbonização (estratégia não relevante, estratégia pouco relevante, relevante, muito relevante e estratégia crítica). Além disso, houve perguntas para classificação dos riscos em baixo, médio ou alto com relação ao potencial impacto e probabilidade de ocorrência. Além disso, foi realizado também um aprofundamento em qual seria o combustível alternativo focal para a transição energética do modo e qual o percentual de mistura do biocombustível no combustível rodoviário é produtivo e economicamente viável para o Brasil, nos horizontes de 2035 e 2050. Por fim, foram feitas perguntas abertas onde os especialistas tiveram aoportunidade de deixar críticas e sugestões para a descarbonização do transporte rodoviário de longa distância de cargas do Brasil.



#### 3. PANORAMA PARA A DESCARBONIZAÇÃO DO TRANSPORTE AÉREO DECARGAS

A seguir é apresentado uma análise da percepção dos especialistas com relação à descarbonização do transporte rodoviário de longa distância de cargas brasileiro. Como este estudo foi baseado na percepção dos especialistas com relação aos caminhos para a descarbonização do transporte rodoviário de longa distância, os resultados e conclusões apresentados se limitam as percepções deles.



#### 3.1 Medidas de mitigação

Para entendermos qual a percepção dos especialistas com relação aos possíveis caminhos para descarbonização, foi indagado sobre qual a probabilidade, das medidas listadas, serem utilizadas para a descarbonização do modo, sendo classificado em uma escala de Likert de 1 a 5, sendo 1 para pouco provável e 5 para muito provável. As medidas apresentadas foram as seguintes:

- Adoção de caminhões elétricos;
- Adoção de veículos híbridos (Diesel-Elétricos) e/ou implementos eletrificados;



- Utilização de frota a gás (GNV/Biometano);
- Biodiesel convencional;
- Biodiesel bidestilado;
- Diesel verde;
- Práticas de condução eficiente;
- Otimização inteligente de rotas e alocação de frota;
- Qualidade de pavimento das rodovias;
- Incentivo à mudança modal da carga para o transporte ferroviário;
- Incentivo à mudança modal da carga para o transporte aquático.

Para os especialistas, práticas de condução eficiente, otimização inteligente de rotas e alocação de frota são as medidas com maior probabilidade de ocorrência, uma vez que são medidas que possuem ganho imediato e baixo custo de aplicação, seguido do uso de combustíveis alternativos, com o uso de veículos movidos a gás e uso de biocombustíveis, demonstrando que o foco da descarbonização do modo estará no aumento da eficiência energética e uso de combustíveis menos poluentes, que já se encontram disponíveis no mercado, sendo o cerne destas medidas o aprimoramento tecnológico dos veículos para recepção adequada dos combustíveis alternativos e menor perda/equiparação da eficiência energética em comparação com o diesel. Entretanto, os especialistas consideram que a adoção de sistemas de propulsão alternativos (elétricos e híbridos) possuem menor probabilidade de liderarem a transição tecnológica deste segmento de longa distância, dado o investimento necessário para aquisição dos veículos e implementação da infraestrutura de carregamento nas rodovias brasileiras.

#### 3.2 Percepções sobre a descarbonização e rotas tecnológicas

Quando se trata da participação do biodiesel na mistura com o diesel, é previsto uma variação do percentual de 7% a 30%, com média em torno de 20-30% para o horizonte de 2035, já para o horizonte de 2050, a variação aumentou, com um dos especialistas entendendo que pode chegar até 100% a participação do biodiesel, a média se manteve em torno de 30-40% de participação. No caso do diesel verde, as projeções são para uma participação mais baixa, variando de 0% a 7%, com média de 5% para 2035, com um aumento mais significativo para 2050, variando de 5% a 25% e média de 20-25% de participação deste biocombustível.

No que se refere à participação das vendas de novos caminhões pesados com tecnologias alternativas, os especialistas apontaram que haverá uma participação mais forte dos veículos elétricos (3-30%) e a gás natural/biometano (7-10%), com uma leve participação do hidrogênio.

Em geral, os especialistas entendem que foco principal dos investimentos para a descarbonização do transporte rodoviário de longa distância estará pautado na adoção dos veículos movidos à gás natural/biometano (57%), seguido da produção e uso de biodiesel bidestilado isoladamente (14,3%) ou associado com outras medidas (14,3%) e, por fim, com uso do diesel verde (14,3%), isso para o horizonte de 2035 (Figura 1). Os veículos movidos a gás natural/biometano (42,9%) continuam sendo a principal escolha para 2050 (Figura 2), também seguido do biodiesel bidestilado (28,6%), sendo mencionada a inserção dos veículos movidos a hidrogênio (14,3%), além do diesel verde a partir do óleo vegetal (14,3%).



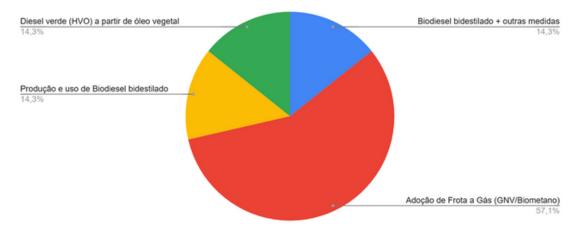



Figura 1: Foco principal e prioritário dos investimentos e políticas públicas (2026-2035).

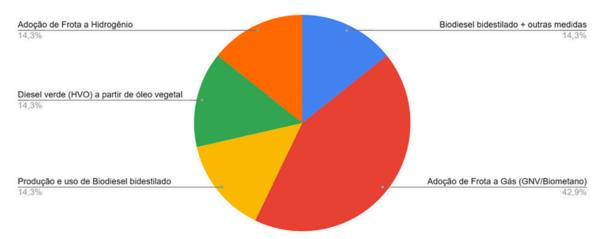



Figura 2: Foco principal e prioritário dos investimentos e políticas públicas (2035-2050).

Com relação aos riscos, o lobby da cadeia automotiva nacional é a maior preocupação segundo os especialistas, uma vez que isso pode inviabilizar o avanço de novas tecnologias na participação de mercado em detrimento das já existentes. Na Figura 3, é possível observar a matriz de risco para o transporte rodoviário de longa distância. Para a alocação dos riscos dentro da matriz, para casos de convergência da resposta foi considerada a moda, quando não houve convergência entre as respostas foi considerada a média.



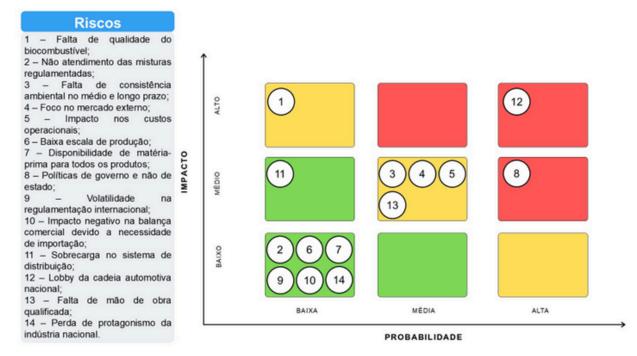



Figura 3: Matriz de risco do transporte rodoviário de longa distância de cargas.

Outro ponto que foi enfatizado pelos especialistas, é a necessidade de políticas de governamentais, a nível nacional, para garantir a aplicação das medidas, a qualidade do biocombustível, priorização do mercado nacional, principalmente na oferta de combustíveis alternativos, e consistência das ações tomadas, já que ações descoordenadas impactam significativamente os custos operacionais. Além disso, os especialistas consideram que a falta de políticas públicas, ausência de normas e regulamentos claros, associado a falta de desenvolvimento tecnológico, ao investimento elevado e falta de incentivo são barreiras muito relevantes para o avanço da descarbonização do modo.

No âmbito das estratégias que podem viabilizar a descarbonização do modo, o foco está na criação de uma política nacional de uso de energia em transportes, apoiadas pelo o desenvolvimento de normas e regulamentos claros, juntamente com o estabelecimento de metas, somadas a existência de subsídios financeiros, incentivos fiscais e comercialização de carbono, além do investimento em pesquisa e desenvolvimento tecnológico bem como modernização da infraestrutura de abastecimento, tendo assim, um conjunto de ações que são essenciais para o avanço da descarbonização do transporte rodoviário de longa distância.



#### 4. RECOMENDAÇÕES

Com base nas percepções dos especialistas, recomenda-se:

Fortalecer a Política de Biocombustíveis: Avançar no aumento do percentual de mistura de biodiesel e diesel verde, com foco no aumento da escala de produção e garantia da disponibilidade de matéria-prima;



- Estabelecer um Marco Regulatório: Desenvolver e implementar uma política nacional de uso de energia para o transporte que seja de governo, não de estado, com normas e regulamentações claras e consistentes, evitando a volatilidade e oferecendo segurança jurídica para investimentos;
- Promover e Fortalecer a Eficiência Operacional: Disseminar e incentivar amplamente as práticas de condução eficiente e o uso de ferramentas de otimização inteligente de rotas e alocação de frota;
- Investir em Infraestrutura de Abastecimento: Expandir a infraestrutura de abastecimento para os combustíveis alternativos (gás, elétrico);
- Apoiar a Pesquisa e Desenvolvimento (P&D): Investir em P&D para aprimorar tecnologias de veículos e combustíveis, incluindo a melhoria da eficiência energética e a expansão da autonomia das baterias para futuras aplicações elétricas de longa distância;
- Fornecer Subsídios no Curto Prazo: Criar e expandir linhas de crédito e subsídios para reduzir o impacto nos custos operacionais e mitigar os altos investimentos iniciais em novas tecnologias.
- Monitorar e Avaliar o Progresso: Implementar um sistema robusto de monitoramento das emissões e do progresso da descarbonização para ajustar as estratégias conforme necessário.



#### 5. CONSIDERAÇÕES FINAIS

Os especialistas indicam que a descarbonização do transporte rodoviário de longa distância no Brasil será impulsionada principalmente pela utilização de frota a gás natural (GNV/Biometano) e pelo uso crescente de biocombustíveis, como biodiesel e diesel verde. Medidas de eficiência energética, como condução e otimização de rotas, são vistas como cruciais no curto prazo. A eletrificação de caminhões de longa distância ainda é vista com cautela, devido aos desafios com a autonomia da bateria e infraestrutura de carregamento.

As principais preocupações incluem o alto custo operacional, a baixa escala de produção de novos combustíveis, a falta de matéria-prima, e a instabilidade das políticas públicas e regulamentações, que podem ser mitigadas com a criação de uma política nacional de uso de energia em transportes, contando com o apoio de subsídios financeiros para impulsionar a descarbonização do modo.



#### **REFERÊNCIAS**

ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, 2023. Produção e Fornecimento de Biocombustíveis. Disponível em: https://www.gov.br/anp/pt-br/assuntos/producao-e-fornecimento-de-biocombustiveis.

ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, 2025. Produção de Derivados de Petróleo e Processamento de Gás Natural. Disponível em: https://www.gov.br/anp/pt-br/assuntos/producao-de-derivados-de-petroleo-e-processamento-de-gas-natural

COSTA, M. G.et al. V Workshop de Cenários Prospectivos de Uso de Energia em Transportes. Rio de Janeiro, RJ: IBTS, 2024.

EPE – Empresa de Pesquisa Energética, 2024. Plano Decenal de Expansão de energia 2034. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2034.

GONÇALVES, D. N. S.; D'AGOSTO, M. de A. Future prospective scenarios for the use of energy in transportation in Brazil and GHG emissions, Business as Usual (BAU) scenario – 2050, Final Report. 1ª ed, Instituto Brasileiro de Transporte Sustentável (IBTS), Rio de Janeiro, 2017.

GONÇALVES, D. N. S. Elaboração de Cenários Prospectivos para o Uso de Energia e Emissões de Gases de Efeito Estufa no Setor de Transportes Brasileiro - Uma Abordagem Multinível. Tese de Doutorado. Universidade Federal do Rio de Janeiro, 2022.

IEA – International Energy Agency, 2023. Net Zero Roadmap: A global Pathway to keep the 1,5<sup>a</sup> g Goal in reach. https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach

IPCC - Intergovernmental Panel on Climate Change, 2022. AR6 - Mitigation of Climate Change. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC\_AR6\_WGIII\_FullReport.pdf

SEEG – SISTEMA DE ESTIMATIVAS DE EMISSÕES E REMOÇÕES DE GASES DE EFEITO ESTUFA, 2024, Análise das emissões brasileiras de gases de efeito estufa e suas implicações para as metas de clima do Brasil (1970-2023). Disponível em: https://seeg.eco.br/wp-content/uploads/2024/11/SEEG-RELATORIO-ANALITICO-12.pdf.

United Nations, 2023. Review of Maritime Transport - 2023, Towards a green and just transition. United Nations Conference on trade and development. Disponível em: https://unctad.org/system/files/official-document/rmt2023\_en.pdf.





# **Anexo I**Glossário dos combustíveis

As definições apresentadas a seguir estão disponíveis no site da Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP, 2023; ANP, 2025).

**Diesel:** O óleo diesel é um combustível líquido derivado de petróleo, composto por hidrocarbonetos com cadeias de 8 a 16 carbonos e, em menor proporção, nitrogênio, enxofre e oxigênio. É utilizado principalmente nos motores ciclo Diesel (de combustão interna e ignição por compressão) em veículos rodoviários, ferroviários e marítimos e em geradores de energia elétrica.

**Biodiesel:** O biodiesel é um combustível renovável obtido a partir de um processo químico denominado transesterificação. Por meio desse processo, os triglicerídeos presentes nos óleos e gordura animal reagem com um álcool primário, metanol ou etanol, gerando dois produtos: o éster e a glicerina. O primeiro somente pode ser comercializado como biodiesel, após passar por processos de purificação para adequação à especificação da qualidade, sendo destinado principalmente à aplicação em motores de ignição por compressão (ciclo Diesel).

**Diesel Verde:** Combustível renovável para motores a combustão de ciclo diesel, produzido a partir de matérias-primas renováveis, como gorduras de origem vegetal animal, cana-de-açúcar, etanol e outras biomassas.

**Gás Natural:** Gás natural é uma substância composta por hidrocarbonetos que permanecem em estado gasoso nas condições atmosféricas normais. É essencialmente composta pelos hidrocarbonetos metano (CH<sub>4</sub>), com teores acima de 70%.

O Gás Natural Veicular (GNV): é uma mistura combustível gasosa, proveniente do gás natural, destinada ao uso veicular e cujo componente principal é o metano.

**Biometano:** É obtido por meio de um processo de purificação do biogás, que é gerado por meio da decomposição anaeróbica da matéria orgânica, podendo ser produzido a partir de fontes orgânicas (resíduos agrícolas, resíduos sólidos urbanos, esgotos entre outros materiais orgânicos biodegradáveis).





Por um Brasil resiliente e descarbonizado.







