

NOTA TÉCNICA

Visão dos Especialistas para a Descarbonização do Transporte Aéreo Brasileiro: Impactos, Desafios e Oportunidades.

Setembro de 2025

Produto elaborado para:

Instituto Clima e Sociedade - iCS

Projeto

Roadmap para a Descarbonização do Transporte Rodoviário de Longa Distância, Marítimo e Aéreo de Cargas no Brasil.

Coordenação

Suzana Kahn Ribeiro

Equipe Técnica

Márcio de Almeida D'Agosto Lino Guimarães Marujo Daniel Neves Schmitz Gonçalves Lorena Mirela Ricci

Revisão Técnica

Carine Lacerda Tamar Roitman

Design Gráfico e Diagramação:

Vitor Olavo de Oliveira Castro Moreira Lyvia Costa dos Santos

Resumo Executivo

Esta nota técnica, sumariza a visão dos especialistas do transporte aéreo brasileiro sobre os desafios, estratégias e oportunidades para a descarbonização do transporte aéreo de cargas do Brasil. Com base na resposta dos especialistas, o documento aborda temas como a probabilidade de adoção das medidas mitigadoras, como uso de Combustível Sustentável de Aviação (SAF) e práticas de melhorias operacionais, além de discutir sobre as rotas tecnológicas para a produção do SAF.

1. INTRODUÇÃO

Com o crescimento demográfico e econômico, a atividade de transportes deve aumentar, o que pode elevar a demanda de energia e as emissões de gases de efeito estufa (GEE). Assim, a descarbonização do setor de transportes é um desafio a ser enfrentado para limitar as mudanças do clima (Gonçalves, 2022), uma vez que o setor de transportes é um dos principais consumidores de combustíveis fósseis, utilizando cerca de 95% dos derivados de petróleo ofertados no mundo (IEA, 2023).

Globalmente, as emissões diretas do setor de transporte foram de cerca de 8,9 GtCO_{2e} em 2019, correspondendo a cerca de 15% do total de emissões de GEE e 23% das emissões de CO₂ relacionadas à energia, sendo a maior fonte de emissões do setor. Destaca-se que o transporte rodoviário é responsável por 6,1 GtCO_{2e} (69% do total). O transporte marítimo internacional e a aviação internacional são responsáveis, respectivamente, por 0,8 GtCO_{2e}(9%) e 0,6 GtCO_{2e} (7%). As emissões do transporte rodoviário cresceram a uma taxa de 1,7% entre 2010 e 2019 e as da aviação internacional cresceram 3,4% ao ano, de acordo com a rápida expansão da atividade de transporte no globo, que cresceu 73% entre 2000 e 2018.

O transporte de carga, em particular, cresceu 68% entre 2000 e 2015 e deve triplicar até 2050 com as cadeias de suprimentos globais e o comércio internacional, o que torna a descarbonização deste segmento particularmente desafiadora (IPCC, 2022).

Em 2023 no Brasil, o setor de transportes representou cerca de 1/3 do consumo final de energia, sendo que apenas 22,5% da sua matriz energética veio de fontes renováveis (EPE, 2024a), além disso, o setor de transportes foi responsável por 44% das emissões de CO_{2e} do setor energético (SEEG, 2024), o que leva a necessidade de pensar em várias soluções, sem exclusão obrigatória do combustível fóssil, para a descarbonização deste setor, ainda mais se considerarmos que houve um crescimento de 47% do transporte de carga no Brasil de 2005 a 2015 (GONÇALVES e D'AGOSTO, 2017).

Além das ações que buscam aprimorar a eficiência operacional do setor e dos equipamentos por ele utilizados, o setor aéreo busca expandir o uso do SAF (Sustainable Aviation Fuel). No entanto, é fundamental promover debates para analisar as melhores opções tecnológicas e as matérias-primas associadas. Portanto, é necessário a criação de roadmaps realistas para a transição energética dos diversos segmentos do setor, com base no princípio de políticas "sem arrependimentos", sendo monitoradas, verificadas e reportadas regularmente as condições de mercado e inovações tecnológicas, além de evitar políticas que promovam bloqueios tecnológicos (lock-in), promovendo a competição entre as rotas tecnológicas (EPE, 2024).

Dessa forma, esta nota técnica tem como objetivo apresentar os resultados preliminares do projeto de pesquisa "Roadmap para a Descarbonização do Transporte Rodoviário de Longa Distância, Marítimo e Aéreo de Cargas no Brasil" conduzido pelo Laboratório de Transporte de Carga (LTC) da COPPE/UFRJ com apoio do Instituto Clima e Sociedade (iCS), analisando, a partir de uma síntese da visão de especialistas do setor de qual serão as rotas e estratégias possivelmente adotadas para a descarbonização, fornecendo um panorama das perspectivas e dos caminhos a serem seguidos para a transição energética e tecnológica do transporte aéreo.

2. METODOLOGIA

Foi aplicada uma <u>pesquisa</u> estruturada com 5 especialistas selecionados do presente modo de transporte, que atuam nas áreas de engenharia aeroespacial, energias (exploração de petróleo e produção de combustíveis), produção de biocombustíveis e transporte aéreo, para os quais foi apresentado o contexto do projeto onde a pesquisa está inserida e do modo a ser avaliado. Os questionamentos incluídos na pesquisa foram baseados nos resultados obtidos a partir de uma revisão bibliográfica narrativa e documental, onde foram mapeadas as tendências nacionais e mundiais quanto a transição energética e tecnológica do transporte de carga (rodoviário de longa distância, marítimo e aéreo) e também dos resultados obtidos a partir do 5º Workshop Cenários Prospectivos para Uso de Energia em Transportes (WCPUET) (COSTA et al., 2024).

As perguntas do questionário foram do tipo escala de Likert para a probabilidade de uso das medidas de descarbonização (1 - pouco provável, 2 - menos provável, 3 - provável, 4 - mais provável e 5 - muito provável), relevância das barreiras para implementação das alternativas de descarbonização (barreira não relevante, pouco relevante, relevante, muito relevante e barreira crítica) e relevância das estratégias de descarbonização (estratégia não relevante, estratégia pouco relevante, relevante, muito relevante e estratégia crítica). Além disso, houve perguntas para classificação dos riscos em baixo, médio ou alto com relação ao potencial impacto e probabilidade de ocorrência. Além disso, foi realizado também um aprofundamento em qual seria a rota de produção do combustível alternativo e qual o percentual de mistura do biocombustível combustível aéreo é produtivo e economicamente viável para o Brasil, nos horizontes de 2035 e 2050. Por fim, foram feitas perguntas abertas onde os especialistas tiveram a oportunidade de deixar críticas e sugestões para a descarbonização do transporte aéreo de cargas do Brasil.

3. PANORAMA PARA A DESCARBONIZAÇÃO DO TRANSPORTE AÉREO DECARGAS

A seguir é apresentada uma análise da percepção dos especialistas com relação à descarbonização do transporte aéreo de cargas brasileiro. Como este estudo foi baseado na percepção dos especialistas com relação aos caminhos para a descarbonização do transporte aéreo, os resultados e conclusões apresentados se limitam as percepções deles.

3.1 Medidas de mitigação

Para entendermos qual a percepção dos especialistas com relação aos possíveis caminhos para descarbonização, foi indagado sobre qual a probabilidade, das medidas listadas, serem utilizadas para a descarbonização do modo aéreo, sendo classificadas em uma escala de Likert de 1 a 5, sendo 1 para pouco provável e 5 para muito provável. As medidas apresentadas foram as seguintes:

- Aumento da eficiência em operações aéreas;
- Modernização da frota de aeronaves com maior eficiência energética;
- Otimização inteligente de rotas e alocação de frotas;
- Uso de SAF (combustível sustentável para aviação).

Para os especialistas, o aumento da eficiência operacional e eficiência energética são as medidas com maior probabilidade de serem adotadas, com menor probabilidade da adoção da otimização inteligente de rotas, alocação de frotas e uso do SAF, entretanto eles consideram que o ponto focal dos investimentos e estratégias estarão voltados para o desenvolvimento das rotas tecnológicas para a produção do SAF.

3.2 Percepções sobre a descarbonização e rotas tecnológicas

Existiu um consenso de que a tendência para o uso de combustível alternativo estará focada na produção e uso de biodiesel convencional, onde 60% dos especialistas considerou esta rota como a principal e prioritária dos investimentos e políticas públicas para o horizonte 2026-2035 e 2035-2050 (Figura 1), sendo a segunda alternativa o uso de etanol somente (20%) ou associado ao uso do diesel verde (HVO - Óleo Vegetal Hidrotratado; 20%).

Houve um consenso entre os especialistas que o foco principal e prioritário está no uso do SAF (80%), sendo que para o horizonte de 2026-2035, 40% considerou o uso da rota a partir do etanol (Alcohol-to-Jet - AtJ) e 40% a partir de óleos e gorduras (rota HEFA), com 20% considerando a eficiência energética como foco principal (Figura 1), sendo que para o período de curto-médio prazo o foco é a rota HEFA, por ser considerada a opção mais competitiva e de implementação mais rápida e pela possibilidade de utilizar a capacidade ociosa de refinarias existentes e aproveitar matérias-primas já consolidadas no país, como o óleo de soja e o sebo bovino (DA COSTA, GONÇALVES E D'AGOSTO, 2025). Já no horizonte de 2035-2050, 100% dos especialistas consideraram que o foco dos investimentos e políticas públicas será o uso de SAF, com diferenciação apenas das rotas, onde 40% entendeu que seria via rota HEFA, 20% entendeu que seria o SAF na forma sintética (e-SAF) e 40% via rota AtJ (Figura 2). Nesse horizonte, a introdução da rota AtJ é fundamental para expandir a oferta de SAF de forma significativa. Com a eletrificação progressiva da frota de veículos leves, espera-se uma redução na demanda por etanol (anidro e hidratado) no Brasil. Esse excedente da produção nacional de etanol poderá ser direcionado para a produção de SAF via AtJ (DA COSTA, GONÇALVES E D'AGOSTO, 2025).

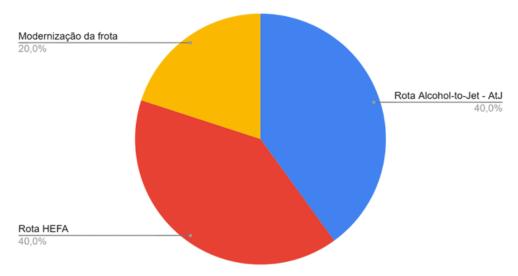


Figura 1: Foco principal e prioritário dos investimentos e políticas públicas (2026-2035).

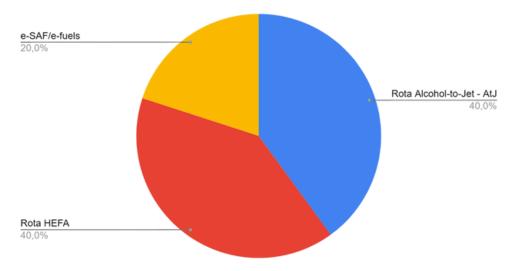


Figura 2: Foco principal e prioritário dos investimentos e políticas públicas (2035-2050).

Com relação a participação percentual do SAF na mistura com a querosene de aviação (QAV), 40% dos especialistas entendeu que o percentual economicamente factível é 10%, 40% considerou 20% como sendo o percentual economicamente factível e 20% considerou como factível 30% de mistura do SAF no QAV, isso levando em consideração o horizonte de 2035. Já para o horizonte de 2050, os especialistas consideram que haverá um salto considerável na participação do SAF, com 60% entendendo que a participação será de 50%, 20% que será de 80% e 20% que será de 100%.

Com relação aos riscos relacionados à descarbonização do transporte aéreo, os principais desafios são os custos operacionais e a volatilidade na regulamentação internacional com uma alta probabilidade de ocorrência e alto impacto, uma vez que o custo para produção do SAF é elevada, impactando diretamente nos custos operacionais, uma vez que, como notado por um dos especialistas, o combustível corresponde a cerca de 40% dos custos operacionais, além disso, ainda existe a possibilidade de que pelo alto valor agregado desse combustível e a rigorosidade das regulamentações internacionais, os produtores nacionais priorizem os mercados estrangeiros para a comercialização do combustível, impactando a disponibilidade para o mercado interno.

Na Figura 3, é apresentada a matriz de risco para o transporte aéreo. Para a alocação dos riscos dentro da matriz, para casos de convergência da resposta foi considerada a moda, quando não houve convergência entre as respostas foi considerada a média.

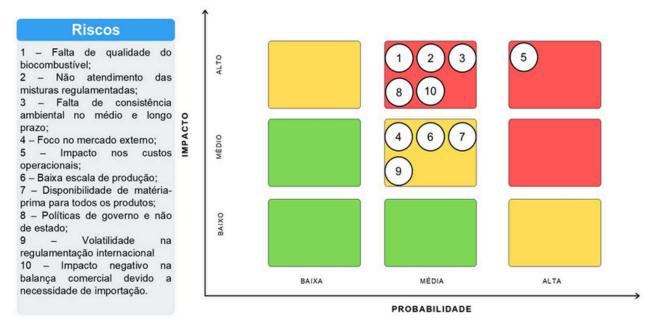


Figura 3: Matriz de risco do transporte aéreo de cargas.

Os especialistas também enfatizam a importância de políticas públicas (risco de alto impacto) e estratégias para garantir as misturas regulamentadas e que favoreçam o mercado interno, trazendo segurança para quem atua no setor e incentivando a descarbonização do modo, além disso, a falta de políticas públicas e a ausência de regulamentação são consideradas barreiras críticas para o avanço da descarbonização do transporte aéreo, juntamente com a falta de subsídios e linhas de créditos, uma vez que exige um investimento elevado para a viabilização da transição energética.

No que diz respeito às estratégias para o avanço do uso do SAF no Brasil, os especialistas consideraram como crítica a criação de normas e regulamentações que garantam o uso adequado e com padrões claros do combustível, além do investimento em pesquisa e desenvolvimento, já que existem diversas rotas que podem viabilizar a produção do SAF. Em adição, a existência de subsídios financeiros, isenções fiscais e tributárias e a criação de uma política nacional de uso de energia em transportes serão fundamentais para a ampliação da adesão ao SAF pelo setor e aceleração do processo de descarbonização do transporte aéreo.

Apesar de ser uma preocupação a disputa com outros mercados pelo SAF, ainda é do interesse nacional que o Brasil se torne referência e até mesmo um líder global na produção e exportação do SAF, para tal, os especialistas entenderam que deve ser priorizado para os próximos anos a produção do SAF pela rota AtJ (60%) e pela rota HEFA (40%).

4. RECOMENDAÇÕES

Com base na percepção dos especialistas, recomenda-se:

Estabelecer um Marco Regulatório* Sólido para o SAF: Priorizar a criação de uma política nacional para o uso de energia em transportes, incluindo metas obrigatórias, garantir os incentivos fiscais e linhas de crédito específicas para a produção e uso de SAF, visando desonerar o custo final e garantir a competitividade do setor;

- Apoiar a Pesquisa e Desenvolvimento (P&P): Destinar recursos para P&P em rotas de produção do SAF, visando a redução de custos e ganho de escala de produção;
- Investir em Infraestrutura Aeroportuária: Investir na modernização dos aeroportos brasileiros para capacitá-los a receber, armazenar e abastecer aeronaves com SAF;
- Promover a Colaboração Setorial e Parcerias Público-Privadas (PPP): Estimular a formação de consórcios e PPPs entre governos, empresas aéreas, produtores de SAF e centros de pesquisa para compartilhar riscos, incentivar investimentos e acelerar a inovação;
- Incentivar Práticas Operacionais Eficientes: Continuar promovendo e incentivando a adoção de práticas de aumento da eficiência energética e otimização inteligente de rotas, que oferecem ganhos de descarbonização imediatos e complementam o uso do combustível alternativo;
- Fornecer Subsídios no Curto Prazo: Considerar subsídios financeiros nos primeiros anos da transição para SAF, dado o diferencial de preço em relação ao combustível fóssil e o impacto nos custos operacionais das companhias aéreas;
- Monitorar e Avaliar o Progresso: Implementar um sistema robusto de monitoramento das emissões e do progresso da descarbonização para ajustar as estratégias conforme necessário.

5. CONSIDERAÇÕES FINAIS

A percepção dos especialistas aponta que, a curto prazo, medidas mitigadoras voltadas para o aumento da eficiência energética e operacional terão maior probabilidade de aplicação, apesar disso, o ponto crítico para a viabilização da descarbonização do transporte aéreo está no desenvolvimento e aprimoramento da produção de SAF, com investimento para definir qual a rota tecnológica mais eficiente e economicamente viável para avanço e ganho de escala da produção do combustível. Levando em consideração o horizonte até 2035, houve um impasse entre a rota de produção a partir do etanol (AtJ) e produção a partir de óleos e gorduras (HEFA), com a rota HEFA tendo protagonismo devido a infraestrutura já amadurecida de produção, associada a capacidade de aproveitamento dos excedentes das refinarias, já para 2050 foi introduzida a possibilidade de produção de combustíveis sintéticos, além das duas mencionadas anteriormente, com o protagonismo sendo a rota AtJ, uma vez que com o avanço do uso de veículos elétricos (passageiro) teremos um possível excedente de etanol que pode ser redirecionado para a produção do SAF.

A ausência de políticas públicas claras, normas e regulamentações consistentes e elevado investimento para transição do combustível, são vistas como as principais barreiras para o avanço da descarbonização do transporte aéreo, sendo estratégias com o estabelecimento de um marco regulatório claro para o SAF e avanço das pesquisas das rotas de produção do combustível serão fundamentais para que seja viabilizado a adesão do SAF pelo setor.

*Os especialistas consideraram isso como um fator importante, apesar de já existir a Lei do Combustível do Futuro. Isto posto, no Roadmap será explorado como aprimorar a Lei parasuperarmos esta barreira.

REFERÊNCIAS

ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, 2024. Combustíveis de Aviação. Disponível em: https://www.gov.br/anp/pt-br/assuntos/producao-de-derivados-de-petroleo-e-processamento-de-gas-natural/producao-de-derivados-de-petroleo-e-processamento-de-gas-natural/combustiveis-de-aviacao

COSTA, M. G.et al. V Workshop de Cenários Prospectivos de Uso de Energia em Transportes. Rio de Janeiro, RJ: IBTS, 2024.

DA COSTA, M. G.; GONÇALVES, D. N. S.; D.'Agosto, M. A. From commodities to high-value exports: biofuels as a catalyst for Brazil's energy transition and economic transformation. Sustainable Energy Technologies and Assessments, v. 81, p. 104416, 2025.

EPE – Empresa de Pesquisa Energética, 2024a. Plano Decenal de Expansão de energia 2034. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2034.

EPE – Empresa de Pesquisa Energética, 2024b. Combustíveis Sustentáveis de Aviação no Brasil: Perspectivas Futuras. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes- dados-abertos/publicacoes/PublicacoesArquivos/publicacao-839/CA-EPE-DPG-SDB-2024-02_Combust%C3%ADveis_Sustent%C3%A1veis_Avia%C3%A7%C3%A3o_Brasil.pdf

FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo, 2022. Revista Pesquisa FAPESP. Combustível de Aviação Pode ser Produzido a partir de CO2. Disponível em: https://revistapesquisa.fapesp.br/combustivel-de-aviacao-pode-ser-produzido-a-partir-de-co2/

GONÇALVES, D. N. S.; D'AGOSTO, M. de A. Future prospective scenarios for the use of energy in transportation in Brazil and GHG emissions, Business as Usual (BAU) scenario – 2050, Final Report. 1^a ed, Instituto Brasileiro de Transporte Sustentável (IBTS), Rio de Janeiro, 2017.

GONÇALVES, D. N. S. Elaboração de Cenários Prospectivos para o Uso de Energia e Emissões de Gases de Efeito Estufa no Setor de Transportes Brasileiro - Uma Abordagem Multinível. Tese de Doutorado. Universidade Federal do Rio de Janeiro, 2022.

IEA – International Energy Agency, 2023. Net Zero Roadmap: A global Pathway to keep the 1,5^a g Goal in reach. https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach

IPCC - Intergovernmental Panel on Climate Change, 2022. AR6 - Mitigation of Climate Change. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf

SEEG – SISTEMA DE ESTIMATIVAS DE EMISSÕES E REMOÇÕES DE GASES DE EFEITO ESTUFA, 2024, Análise das emissões brasileiras de gases de efeito estufa e suas implicações para as metas de clima do Brasil (1970-2023). Disponível em: https://seeg.eco.br/wp-content/uploads/2024/11/SEEG-RELATORIO-ANALITICO-12.pdf.

United Nations, 2023. Review of Maritime Transport - 2023, Towards a green and just transition. United Nations Conference on trade and development. Disponível em: https://unctad.org/system/files/official-document/rmt2023_en.pdf.

Anexo IGlossário dos combustíveis

Combustível Sustentável de Aviação (SAF): Combustível alternativo para a aviação produzido a partir de matéria prima renovável com propriedades análogas ao querosene de aviação, sendo considerado *drop-in*, com variação apenas da rota de produção (EPE, 2024).

Querosene de Aviação (QAV): O querosene de aviação, também conhecido como Jet-A1 ou QAV, é um derivado de petróleo obtido por processos de refino como o fracionamento por destilação atmosférica, contendo cadeias de 11 a 12 carbonos e utilizado em motores movidos a turbina (ANP, 2024).

Rota Alcohol-to-Jet (AtJ): SAF produzido a partir de álcoois, cuja tecnologia de produção já está consolidada com a produção de etanol a partir da cana-de-açúcar (EPE, 2024).

Rota a partir de óleos e gorduras (HEFA): SAF produzido a partir de óleos e gorduras, sendo a rota tecnológica mais madura e comum para a produção desse combustível (EPE, 2024).

Combustíveis sintéticos (e-SAF/e-fuels): Combustível sintetizado a partir de rotas tecnológicas e que possa substituir parcial ou totalmente combustíveis de origem fóssil. No caso do e-SAF o método de produção é o Power-to-Liquid (PtL) combinando o hidrogênio verde com o dióxido de carbono (CO₂) (FAPESP, 2022).

Por um Brasil resiliente e descarbonizado.

